private void FindAllPaths(Vertex vertex, Set <CnfClause <T_Identifier> > cnfClauses, Set <DnfClause <T_Identifier> > dnfClauses, Set <Literal <T_Identifier> > path) { if (vertex.IsOne()) { // create DNF clause var clause = new DnfClause <T_Identifier>(path); dnfClauses.Add(clause); } else if (vertex.IsZero()) { // create CNF clause var clause = new CnfClause <T_Identifier>(new Set <Literal <T_Identifier> >(path.Select(l => l.MakeNegated()))); cnfClauses.Add(clause); } else { // keep on walking... foreach (var successor in _context.GetSuccessors(vertex)) { path.Add(successor.Literal); FindAllPaths(successor.Vertex, cnfClauses, dnfClauses, path); path.Remove(successor.Literal); } } }
/// <summary> /// Converts the decision diagram (Vertex) wrapped by this converter and translates it into DNF /// and CNF forms. I'll first explain the strategy with respect to DNF, and then explain how CNF /// is achieved in parallel. A DNF sentence representing the expression is simply a disjunction /// of every rooted path through the decision diagram ending in one. For instance, given the /// following decision diagram: /// /// A /// 0/ \1 /// B C /// 0/ \1 0/ \1 /// One Zero One /// /// the following paths evaluate to 'One' /// /// !A, !B /// A, C /// /// and the corresponding DNF is (!A.!B) + (A.C) /// /// It is easy to compute CNF from the DNF of the negation, e.g.: /// /// !((A.B) + (C.D)) iff. (!A+!B) . (!C+!D) /// /// To compute the CNF form in parallel, we negate the expression (by swapping One and Zero sinks) /// and collect negation of the literals along the path. In the above example, the following paths /// evaluate to 'Zero': /// /// !A, B /// A, !C /// /// and the CNF (which takes the negation of all literals in the path) is (!A+B) . (A+!C) /// </summary> private void InitializeNormalForms() { if (null == _cnf) { // short-circuit if the root is true/false if (_vertex.IsOne()) { // And() -> True _cnf = new CnfSentence <T_Identifier>(Set <CnfClause <T_Identifier> > .Empty); // Or(And()) -> True var emptyClause = new DnfClause <T_Identifier>(Set <Literal <T_Identifier> > .Empty); var emptyClauseSet = new Set <DnfClause <T_Identifier> >(); emptyClauseSet.Add(emptyClause); _dnf = new DnfSentence <T_Identifier>(emptyClauseSet.MakeReadOnly()); } else if (_vertex.IsZero()) { // And(Or()) -> False var emptyClause = new CnfClause <T_Identifier>(Set <Literal <T_Identifier> > .Empty); var emptyClauseSet = new Set <CnfClause <T_Identifier> >(); emptyClauseSet.Add(emptyClause); _cnf = new CnfSentence <T_Identifier>(emptyClauseSet.MakeReadOnly()); // Or() -> False _dnf = new DnfSentence <T_Identifier>(Set <DnfClause <T_Identifier> > .Empty); } else { // construct clauses by walking the tree and constructing a clause for each sink Set <DnfClause <T_Identifier> > dnfClauses = new Set <DnfClause <T_Identifier> >(); Set <CnfClause <T_Identifier> > cnfClauses = new Set <CnfClause <T_Identifier> >(); Set <Literal <T_Identifier> > path = new Set <Literal <T_Identifier> >(); FindAllPaths(_vertex, cnfClauses, dnfClauses, path); _cnf = new CnfSentence <T_Identifier>(cnfClauses.MakeReadOnly()); _dnf = new DnfSentence <T_Identifier>(dnfClauses.MakeReadOnly()); } } }
public bool Equals(DnfClause <T_Identifier> other) { return(null != other && other.Literals.SetEquals(Literals)); }