public override void UpdateCollision(float dt)
        {
            WasContaining = Containing;
            WasTouching   = Touching;

            mobileTriangle.collisionMargin = mesh.Shape.MeshCollisionMargin;

            //Scan the pairs in sequence, updating the state as we go.
            //Touching can be set to true by a single touching subpair.
            Touching = false;
            //Containing can be set to false by a single noncontaining or nontouching subpair.
            Containing = true;


            var            meshData = mesh.Shape.TriangleMesh.Data;
            RigidTransform mobileTriangleTransform, detectorTriangleTransform;

            mobileTriangleTransform.Orientation   = Quaternion.Identity;
            detectorTriangleTransform.Orientation = Quaternion.Identity;
            for (int i = 0; i < meshData.Indices.Length; i += 3)
            {
                //Grab a triangle associated with the mobile mesh.
                meshData.GetTriangle(i, out mobileTriangle.vA, out mobileTriangle.vB, out mobileTriangle.vC);
                RigidTransform.Transform(ref mobileTriangle.vA, ref mesh.worldTransform, out mobileTriangle.vA);
                RigidTransform.Transform(ref mobileTriangle.vB, ref mesh.worldTransform, out mobileTriangle.vB);
                RigidTransform.Transform(ref mobileTriangle.vC, ref mesh.worldTransform, out mobileTriangle.vC);
                Vector3.Add(ref mobileTriangle.vA, ref mobileTriangle.vB, out mobileTriangleTransform.Position);
                Vector3.Add(ref mobileTriangle.vC, ref mobileTriangleTransform.Position, out mobileTriangleTransform.Position);
                Vector3.Multiply(ref mobileTriangleTransform.Position, 1 / 3f, out mobileTriangleTransform.Position);
                Vector3.Subtract(ref mobileTriangle.vA, ref mobileTriangleTransform.Position, out mobileTriangle.vA);
                Vector3.Subtract(ref mobileTriangle.vB, ref mobileTriangleTransform.Position, out mobileTriangle.vB);
                Vector3.Subtract(ref mobileTriangle.vC, ref mobileTriangleTransform.Position, out mobileTriangle.vC);

                //Go through all the detector volume triangles which are near the mobile mesh triangle.
                bool        triangleTouching, triangleContaining;
                BoundingBox mobileBoundingBox;
                mobileTriangle.GetBoundingBox(ref mobileTriangleTransform, out mobileBoundingBox);
                DetectorVolume.TriangleMesh.Tree.GetOverlaps(mobileBoundingBox, overlaps);
                for (int j = 0; j < overlaps.Count; j++)
                {
                    DetectorVolume.TriangleMesh.Data.GetTriangle(overlaps.Elements[j], out detectorTriangle.vA, out detectorTriangle.vB, out detectorTriangle.vC);
                    Vector3.Add(ref detectorTriangle.vA, ref detectorTriangle.vB, out detectorTriangleTransform.Position);
                    Vector3.Add(ref detectorTriangle.vC, ref detectorTriangleTransform.Position, out detectorTriangleTransform.Position);
                    Vector3.Multiply(ref detectorTriangleTransform.Position, 1 / 3f, out detectorTriangleTransform.Position);
                    Vector3.Subtract(ref detectorTriangle.vA, ref detectorTriangleTransform.Position, out detectorTriangle.vA);
                    Vector3.Subtract(ref detectorTriangle.vB, ref detectorTriangleTransform.Position, out detectorTriangle.vB);
                    Vector3.Subtract(ref detectorTriangle.vC, ref detectorTriangleTransform.Position, out detectorTriangle.vC);

                    //If this triangle collides with the convex, we can stop immediately since we know we're touching and not containing.)))
                    //[MPR is used here in lieu of GJK because the MPR implementation tends to finish quicker than GJK when objects are overlapping.  The GJK implementation does better on separated objects.]
                    if (MPRToolbox.AreShapesOverlapping(detectorTriangle, mobileTriangle, ref detectorTriangleTransform, ref mobileTriangleTransform))
                    {
                        triangleTouching = true;
                        //The convex can't be fully contained if it's still touching the surface.
                        triangleContaining = false;
                        overlaps.Clear();
                        goto finishTriangleTest;
                    }
                }

                overlaps.Clear();
                //If we get here, then there was no shell intersection.
                //If the convex's center point is contained by the mesh, then the convex is fully contained.
                //This test is only needed if containment hasn't yet been outlawed or a touching state hasn't been established.
                if ((!Touching || Containing) && DetectorVolume.IsPointContained(ref mobileTriangleTransform.Position, overlaps))
                {
                    triangleTouching   = true;
                    triangleContaining = true;
                    goto finishTriangleTest;
                }

                //If we get here, then there was no surface intersection and the convex's center is not contained- the volume and convex are separate!
                triangleTouching   = false;
                triangleContaining = false;

finishTriangleTest:
                //Analyze the results of the triangle test.

                if (triangleTouching)
                {
                    Touching = true; //If one child is touching, then we are touching too.
                }
                else
                {
                    Containing = false;  //If one child isn't touching, then we aren't containing.
                }
                if (!triangleContaining) //If one child isn't containing, then we aren't containing.
                {
                    Containing = false;
                }

                if (!Containing && Touching)
                {
                    //If it's touching but not containing, no further pairs will change the state.
                    //Containment has been invalidated by something that either didn't touch or wasn't contained.
                    //Touching has been ensured by at least one object touching.
                    break;
                }
            }

            //There is a possibility that the MobileMesh is solid and fully contains the DetectorVolume.
            //In this case, we should be Touching, but currently we are not.
            if (mesh.Shape.solidity == MobileMeshSolidity.Solid && !Containing && !Touching)
            {
                //To determine if the detector volume is fully contained, check if one of the detector mesh's vertices
                //are in the mobile mesh.

                //This *could* fail if the mobile mesh is actually multiple pieces, but that's not a common or really supported case for solids.
                Vector3 vertex;
                DetectorVolume.TriangleMesh.Data.GetVertexPosition(0, out vertex);
                Ray ray;
                ray.Direction = Vector3.Up;
                RayHit hit;
                RigidTransform.TransformByInverse(ref vertex, ref mesh.worldTransform, out ray.Position);
                if (mesh.Shape.IsLocalRayOriginInMesh(ref ray, out hit))
                {
                    Touching = true;
                }
            }

            NotifyDetectorVolumeOfChanges();
        }
示例#2
0
        /// <summary>
        /// Gets the intersection between the convex shape and the ray.
        /// </summary>
        /// <param name="ray">Ray to test.</param>
        /// <param name="transform">Transform of the convex shape.</param>
        /// <param name="maximumLength">Maximum distance to travel in units of the ray direction's length.</param>
        /// <param name="hit">Ray hit data, if any.</param>
        /// <returns>Whether or not the ray hit the target.</returns>
        public override bool RayTest(ref Ray ray, ref RigidTransform transform, float maximumLength, out RayHit hit)
        {
            //Put the ray into local space.
            Quaternion conjugate;

            Quaternion.Conjugate(ref transform.Orientation, out conjugate);
            Ray localRay;

            Vector3.Subtract(ref ray.Position, ref transform.Position, out localRay.Position);
            Quaternion.Transform(ref localRay.Position, ref conjugate, out localRay.Position);
            Quaternion.Transform(ref ray.Direction, ref conjugate, out localRay.Direction);

            //Check for containment.
            if (localRay.Position.Y >= -halfHeight && localRay.Position.Y <= halfHeight && localRay.Position.X * localRay.Position.X + localRay.Position.Z * localRay.Position.Z <= radius * radius)
            {
                //It's inside!
                hit.T        = 0;
                hit.Location = localRay.Position;
                hit.Normal   = new Vector3(hit.Location.X, 0, hit.Location.Z);
                float normalLengthSquared = hit.Normal.LengthSquared();
                if (normalLengthSquared > 1e-9f)
                {
                    Vector3.Divide(ref hit.Normal, (float)Math.Sqrt(normalLengthSquared), out hit.Normal);
                }
                else
                {
                    hit.Normal = new Vector3();
                }
                //Pull the hit into world space.
                Quaternion.Transform(ref hit.Normal, ref transform.Orientation, out hit.Normal);
                RigidTransform.Transform(ref hit.Location, ref transform, out hit.Location);
                return(true);
            }

            //Project the ray direction onto the plane where the cylinder is a circle.
            //The projected ray is then tested against the circle to compute the time of impact.
            //That time of impact is used to compute the 3d hit location.
            Vector2 planeDirection = new Vector2(localRay.Direction.X, localRay.Direction.Z);
            float   planeDirectionLengthSquared = planeDirection.LengthSquared();

            if (planeDirectionLengthSquared < Toolbox.Epsilon)
            {
                //The ray is nearly parallel with the axis.
                //Skip the cylinder-sides test.  We're either inside the cylinder and won't hit the sides, or we're outside
                //and won't hit the sides.
                if (localRay.Position.Y > halfHeight)
                {
                    goto upperTest;
                }
                if (localRay.Position.Y < -halfHeight)
                {
                    goto lowerTest;
                }


                hit = new RayHit();
                return(false);
            }
            Vector2 planeOrigin = new Vector2(localRay.Position.X, localRay.Position.Z);
            float   dot;

            Vector2.Dot(ref planeDirection, ref planeOrigin, out dot);
            float closestToCenterT = -dot / planeDirectionLengthSquared;

            Vector2 closestPoint;

            Vector2.Multiply(ref planeDirection, closestToCenterT, out closestPoint);
            Vector2.Add(ref planeOrigin, ref closestPoint, out closestPoint);
            //How close does the ray come to the circle?
            float squaredDistance = closestPoint.LengthSquared();

            if (squaredDistance > radius * radius)
            {
                //It's too far!  The ray cannot possibly hit the capsule.
                hit = new RayHit();
                return(false);
            }



            //With the squared distance, compute the distance backward along the ray from the closest point on the ray to the axis.
            float backwardsDistance = radius * (float)Math.Sqrt(1 - squaredDistance / (radius * radius));
            float tOffset           = backwardsDistance / (float)Math.Sqrt(planeDirectionLengthSquared);

            hit.T = closestToCenterT - tOffset;

            //Compute the impact point on the infinite cylinder in 3d local space.
            Vector3.Multiply(ref localRay.Direction, hit.T, out hit.Location);
            Vector3.Add(ref hit.Location, ref localRay.Position, out hit.Location);

            //Is it intersecting the cylindrical portion of the capsule?
            if (hit.Location.Y <= halfHeight && hit.Location.Y >= -halfHeight && hit.T < maximumLength)
            {
                //Yup!
                hit.Normal = new Vector3(hit.Location.X, 0, hit.Location.Z);
                float normalLengthSquared = hit.Normal.LengthSquared();
                if (normalLengthSquared > 1e-9f)
                {
                    Vector3.Divide(ref hit.Normal, (float)Math.Sqrt(normalLengthSquared), out hit.Normal);
                }
                else
                {
                    hit.Normal = new Vector3();
                }
                //Pull the hit into world space.
                Quaternion.Transform(ref hit.Normal, ref transform.Orientation, out hit.Normal);
                RigidTransform.Transform(ref hit.Location, ref transform, out hit.Location);
                return(true);
            }

            if (hit.Location.Y < halfHeight)
            {
                goto lowerTest;
            }
upperTest:
            //Nope! It may be intersecting the ends of the cylinder though.
            //We're above the cylinder, so cast a ray against the upper cap.
            if (localRay.Direction.Y > -1e-9)
            {
                //Can't hit the upper cap if the ray isn't pointing down.
                hit = new RayHit();
                return(false);
            }
            float   t = (halfHeight - localRay.Position.Y) / localRay.Direction.Y;
            Vector3 planeIntersection;

            Vector3.Multiply(ref localRay.Direction, t, out planeIntersection);
            Vector3.Add(ref localRay.Position, ref planeIntersection, out planeIntersection);
            if (planeIntersection.X * planeIntersection.X + planeIntersection.Z * planeIntersection.Z < radius * radius + 1e-9 && t < maximumLength)
            {
                //Pull the hit into world space.
                Quaternion.Transform(ref Toolbox.UpVector, ref transform.Orientation, out hit.Normal);
                RigidTransform.Transform(ref planeIntersection, ref transform, out hit.Location);
                hit.T = t;
                return(true);
            }
            //No intersection! We can't be hitting the other sphere, so it's over!
            hit = new RayHit();
            return(false);

lowerTest:
            //Is it intersecting the bottom cap?
            if (localRay.Direction.Y < 1e-9)
            {
                //Can't hit the bottom cap if the ray isn't pointing up.
                hit = new RayHit();
                return(false);
            }
            t = (-halfHeight - localRay.Position.Y) / localRay.Direction.Y;
            Vector3.Multiply(ref localRay.Direction, t, out planeIntersection);
            Vector3.Add(ref localRay.Position, ref planeIntersection, out planeIntersection);
            if (planeIntersection.X * planeIntersection.X + planeIntersection.Z * planeIntersection.Z < radius * radius + 1e-9 && t < maximumLength)
            {
                //Pull the hit into world space.
                Quaternion.Transform(ref Toolbox.DownVector, ref transform.Orientation, out hit.Normal);
                RigidTransform.Transform(ref planeIntersection, ref transform, out hit.Location);
                hit.T = t;
                return(true);
            }
            //No intersection! We can't be hitting the other sphere, so it's over!
            hit = new RayHit();
            return(false);
        }