示例#1
0
        public void Initialize(Metrics metrics, int numIter, int cThreads)
        {
            this.regressionTrees = new RegressionTree[numIter, this.boostTreeLoss.NumTreesPerIteration];

            this.tempSpace = new TempSpace(this.numSamples);

            //moved the following functions out
            //DistributedBuildBoostTree(metrics, this.boostTreeLoss, dataFeatureSampleRate, maxTreeSize, minNumSamples, numIter, cThreads, r);
            //SaveBoostTree();

            //float minValidationErr = 100;
            //float[] funValueGain = new float[this.numSamples];

            //(1) compute scores produced by the sub-model
            boostTreeLoss.ModelEval(this.subModel, this.labelFeatureDataCoded, this.subModelScore);

            //(2) compute the corresponding function values;
            boostTreeLoss.ModelScoresToFuncValues();

            //(3) compute the metrics of the sub-model
            int m = optIter = 0;

            metrics.ComputeMetrics(boostTreeLoss.ModelScores, m, false);
#if VERBOSE
            Console.WriteLine(metrics.ResultsHeaderStr());
            Console.WriteLine(metrics.ResultsStr(m));
#endif
            //(4) creat samplers to sub-sampl the features and data during node spliting
            //RandomSampler featureSampler = new RandomSampler(r);
            //RandomSampler dataSampler = new RandomSampler(r);

            //(5) creat the object that does node splitting
#if SINGLE_THREAD
            // single-threaded
             this.findSplit = new FindSplitSync();
#else
            // multi-threaded
            this.findSplit = new FindSplitAsync(cThreads);
#endif //SINGLE_THREAD

        }
示例#2
0
        public void Predict(LabelFeatureData labelFeatureData, int numIter,
                            BoostTreeLoss boostTreeLoss,
                            Metrics metrics, //reporting the error for each iteration if the following are set
                            bool silent // If true, only report results on the last iteration
                            )
        {
            if (numIter > this.TotalIter)
                numIter = this.TotalIter;

            boostTreeLoss.Reset(labelFeatureData.NumDataPoint);

            //(1) compute the probabilities produced by the sub-model
            boostTreeLoss.ModelEval(this.subModel, labelFeatureData, null);

            //(2) compute the corresponding function values;
            boostTreeLoss.ModelScoresToFuncValues();

            if (metrics != null)
            {
                metrics.ComputeMetrics(boostTreeLoss.ModelScores, 0, this.optIter == 0);
#if VERBOSE
                Console.WriteLine(metrics.ResultsHeaderStr());
                Console.WriteLine(metrics.ResultsStr(0));
#endif
            }

            //(3) accumulate the function values for each boosted regression tree
            int numSamples = labelFeatureData.NumDataPoint;
            float[] funValueGain = new float[numSamples];

#if GET_PER_DOC_PER_ITER_SCORES
            float[][] saveScores = ArrayUtils.FloatMatrix(numIter+2, labelFeatureData.NumDataPoint); // We will take transpose when we print
            for (int i = 0; i < labelFeatureData.NumDataPoint; ++i)
            {
                saveScores[0][i] = labelFeatureData.GetGroupId(i);
                saveScores[1][i] = labelFeatureData.GetLabel(i);
            }
#endif

            for (int m = 0; m < numIter; m++)
            {
                // fit a residual model (regression trees) from the pesuso response
                // to compensate the error of the current system
                for (int k = 0; k < boostTreeLoss.NumTreesPerIteration; k++)
                {
                    if (this.regressionTrees[m, 0] == null)
                        break;
#if GET_PER_DOC_PER_ITER_SCORES
                    this.regressionTrees[m, k].PredictFunValueNKeepScores(labelFeatureData, this.Train2TestIdx, funValueGain, saveScores[m+2]);
#else
                    this.regressionTrees[m, k].PredictFunValue(labelFeatureData, this.Train2TestIdx, funValueGain);
#endif
                    boostTreeLoss.AccFuncValueGain(funValueGain, 1.0f, k);
                }


                if (metrics != null)
                {
                    //compute the metrics of the current system
                    boostTreeLoss.FuncValuesToModelScores();
                    metrics.ComputeMetrics(boostTreeLoss.ModelScores, m + 1, this.optIter == m + 1);
                    if(m==numIter-1 || !silent)
                        Console.WriteLine(metrics.ResultsStr(m + 1));
                }
            }

#if GET_PER_DOC_PER_ITER_SCORES
            using (StreamWriter sw = new StreamWriter("allScores.tsv"))
            {
                sw.Write("m:QueryID\tm:Rating"); // Write the header (with no tab at the end!)
                for (int j = 1; j < numIter+1; ++j)
                    sw.Write("\tFtr_" + j.ToString("0000"));
                sw.WriteLine();
                for (int j = 0; j < labelFeatureData.NumDataPoint; ++j)
                {
                    sw.Write("{0}\t{1}", saveScores[0][j], saveScores[1][j]); // Write the query ID and label
                    for (int m = 2; m < numIter + 2; ++m)
                        sw.Write("\t{0:G6}", saveScores[m][j]);
                    sw.WriteLine();
                }
            }
#endif

            if (metrics == null)
            {
                boostTreeLoss.FuncValuesToModelScores();
            }
            else
                metrics.SaveScores("DataScores.txt", boostTreeLoss.ModelScores);
        }
示例#3
0
        public double EvaluateWeakLearner(RegressionTree[] candidateTree, float[] funValueGain, Metrics metrics, BoostTreeLoss boostTreeLoss, int id)
        {
            float[][] scores = new float[boostTreeLoss.NumTreesPerIteration][];
            for (int k = 0; k < boostTreeLoss.NumTreesPerIteration; k++)
            {
                scores[k] = new float[funValueGain.GetLength(0)];
                for (int i = 0; i < funValueGain.GetLength(0); i++)
                {
                    scores[k][i] = 0.0F;
                }
            }

            double result = 0.0;

            for (int k = 0; k < boostTreeLoss.NumTreesPerIteration; k++)
            {

                candidateTree[k].PredictFunValue(this.labelFeatureDataCoded, true, ref funValueGain);

                //we hard code here that k=0 (not performing classification)
                //kms: this is a bit of hack...only will really work for non-classification currently
                // upgrade to have a per loss function evaluation
                for (int i = 0; i < funValueGain.GetLength(0); i++)
                {
                    scores[k][i] =  boostTreeLoss.ModelScores[k][i] +(funValueGain[i] * candidateTree[k].AdjustFactor);
                }
            }

            //need to update id so we have unique id.  For now, we take M + m + 1;
            //assume only want NDCGPairwise for now
            metrics.ComputeMetrics(scores, id, false);
            //NDCGPairwiseType = 2;
            result = metrics.ResultsStrMatrix(id)[(int)DataPartitionType.Train][2];
            //Console.WriteLine(result);

            return result;
        }
示例#4
0
        /// <summary>
        /// This method implements the main functionality of stochastic gradient boosting
        /// </summary>
        private void BuildBoostTree(Metrics metrics, BoostTreeLoss boostTreeLoss, DataFeatureSampleRate dataFeatureSampleRate,
                                    int maxTreeSize, int minNumSamples, int numIter,
                                    int cThreads, Random r)
        {
            float minValidationErr = 100;

            float[] funValueGain = new float[this.numSamples];

            //(1) compute scores produced by the sub-model
            boostTreeLoss.ModelEval(this.subModel, this.labelFeatureDataCoded, this.subModelScore);

            //(2) compute the corresponding function values;
            boostTreeLoss.ModelScoresToFuncValues();

            //(3) compute the metrics of the sub-model
            int m = optIter = 0;
            metrics.ComputeMetrics(boostTreeLoss.ModelScores, m, false);

#if VERBOSE
            Console.WriteLine(metrics.ResultsHeaderStr());
            Console.WriteLine(metrics.ResultsStr(m));
#endif
            //(4) creat samplers to sub-sampl the features and data during node spliting
            RandomSampler featureSampler = new RandomSampler(r);
            RandomSampler dataSampler = new RandomSampler(r);

            //(5) creat the object that does node splitting
#if SINGLE_THREAD
            // single-threaded
             this.findSplit = new FindSplitSync();
#else
            // multi-threaded
            this.findSplit = new FindSplitAsync(cThreads);
#endif //SINGLE_THREAD

            //(6) Iteratively building boosted trees
            for (m = 0; m < numIter; m++)
            {
                // selecting a fraction of data groups for each iteration
                float sampleRate = dataFeatureSampleRate.SampleDataGroupRate(m);
                DataSet workDataSet = this.labelFeatureDataCoded.DataGroups.GetDataPartition(DataPartitionType.Train, sampleRate, r);
                workDataSet.Sort();  // sorting gains some noticable speedup.

                // compute the pseudo response of the current system
                boostTreeLoss.ComputePseudoResponse(workDataSet);

                //set the data and feature sampling rate for node spliting in this iteration
                featureSampler.SampleRate = dataFeatureSampleRate.SampleFeatureRate(m);
                dataSampler.SampleRate = dataFeatureSampleRate.SampleDataRate(m);

                // fit a residual model (regression trees) from the pesuso response
                // to compensate the error of the current system
                for (int k = 0; k < boostTreeLoss.NumTreesPerIteration; k++)
                {
                    //only use the important data points if necessary
                    int[] trimIndex = boostTreeLoss.TrimIndex(workDataSet, k, m);

                    //build a regression tree according to the pseduo-response
                    this.regressionTrees[m, k] = new RegressionTree(this.labelFeatureDataCoded, boostTreeLoss, k, trimIndex,
                                                                    dataSampler, featureSampler, maxTreeSize, minNumSamples, this.findSplit, this.tempSpace);

                    //compute the function value of all data points produced by the newly generated regression tree
                    this.regressionTrees[m, k].PredictFunValue(this.labelFeatureDataCoded, ref funValueGain);

                    //try to do a more global optimalization - refine the leaf node response of a decision tree
                    //by looking at all the training data points, instead of only the ones falling into the regaion.
                    //Here we are estimate and apply a global mutiplication factor for all leaf nodes
                    float adjFactor = (m>0) ? boostTreeLoss.ComputeResponseAdjust(funValueGain) : 1.0F;

                    //apply the multiplication factor to the leaf nodes of the newly generated regression tree
                    this.regressionTrees[m, k].AdjustResponse(adjFactor);

                    //update the function value for all data points given the new regression tree
                    boostTreeLoss.AccFuncValueGain(funValueGain, adjFactor, k);
                }

                //compute the metrics of the current system
                boostTreeLoss.FuncValuesToModelScores();
                metrics.ComputeMetrics(boostTreeLoss.ModelScores, m + 1, false);
#if VERBOSE
                Console.WriteLine(metrics.ResultsStr(m+1));
#endif
                //keep track of the best (minimal Error) iteration on the Validation data set
                this.optIter = metrics.GetBest(DataPartitionType.Validation, ref minValidationErr);

                if ((m+1) % 5 == 0)  // save the tree every 5 iterations
                    SaveBoostTree();
            }

            if (this.findSplit != null)
            {
                this.findSplit.Cleanup();
            }
        }
示例#5
0
        /// <summary>
        /// This method implements the main functionality of stochastic gradient boosting, for distributed computing
        /// </summary>
        private void DistributedBuildBoostTree(Metrics metrics, BoostTreeLoss boostTreeLoss, DataFeatureSampleRate dataFeatureSampleRate,
                                    int maxTreeSize, int minNumSamples, int numIter,
                                    int cThreads, Random r)
        {
            float minValidationErr = 100;

            float[] funValueGain = new float[this.numSamples];

            //(1) compute scores produced by the sub-model
            boostTreeLoss.ModelEval(this.subModel, this.labelFeatureDataCoded, this.subModelScore);

            //(2) compute the corresponding function values;
            boostTreeLoss.ModelScoresToFuncValues();

            //(3) compute the metrics of the sub-model
            int m = optIter = 0;
            metrics.ComputeMetrics(boostTreeLoss.ModelScores, m, false);
#if VERBOSE
            Console.WriteLine(metrics.ResultsHeaderStr());
            Console.WriteLine(metrics.ResultsStr(m));
#endif
            //(4) creat samplers to sub-sampl the features and data during node spliting
            RandomSampler featureSampler = new RandomSampler(r);
            RandomSampler dataSampler = new RandomSampler(r);

            //(5) creat the object that does node splitting
#if SINGLE_THREAD
            // single-threaded
             this.findSplit = new FindSplitSync();
#else
            // multi-threaded
            this.findSplit = new FindSplitAsync(cThreads);
#endif //SINGLE_THREAD

            //(6) Iteratively building boosted trees
            for (m = 0; m < numIter; m++)
            {
                //returns array of regression trees (one per class k) for this iteration
                RegressionTree[] candidateTree = GetNextWeakLearner(m, funValueGain, metrics,boostTreeLoss,dataFeatureSampleRate, dataSampler, featureSampler, maxTreeSize,minNumSamples,cThreads,r);

                AddWeakLearner(candidateTree, funValueGain, m, metrics, boostTreeLoss, dataFeatureSampleRate, maxTreeSize, minNumSamples, cThreads, r);

                //compute the metrics of the current system
                boostTreeLoss.FuncValuesToModelScores();
                metrics.ComputeMetrics(boostTreeLoss.ModelScores, m + 1, false);
#if VERBOSE
                Console.WriteLine(metrics.ResultsStr(m + 1));
#endif
                //keep track of the best (minimal Error) iteration on the Validation data set
                this.optIter = metrics.GetBest(DataPartitionType.Validation, ref minValidationErr);

                if ((m + 1) % 5 == 0)  // save the tree every 5 iterations
                    SaveBoostTree();
            }

            if (this.findSplit != null)
            {
                this.findSplit.Cleanup();
            }
        }