示例#1
0
        //***********************************************************************
        // Overloading of bitwise XOR operator
        //***********************************************************************

        public static BigInteger operator ^(BigInteger bi1, BigInteger bi2)
        {
            var result = new BigInteger();

            int len = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength;

            for (int i = 0; i < len; i++)
            {
                uint sum = (bi1._data[i] ^ bi2._data[i]);
                result._data[i] = sum;
            }

            result.DataLength = MaxLength;

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;

            return result;
        }
示例#2
0
        //***********************************************************************
        // Overloading of unary << operators
        //***********************************************************************

        public static BigInteger operator <<(BigInteger bi1, int shiftVal)
        {
            var result = new BigInteger(bi1);
            result.DataLength = ShiftLeft(result._data, shiftVal);

            return result;
        }
示例#3
0
        //***********************************************************************
        // Overloading of the NOT operator (1's complement)
        //***********************************************************************

        public static BigInteger operator ~(BigInteger bi1)
        {
            var result = new BigInteger(bi1);

            for (int i = 0; i < MaxLength; i++)
                result._data[i] = (~(bi1._data[i]));

            result.DataLength = MaxLength;

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;

            return result;
        }
示例#4
0
        //***********************************************************************
        // Overloading of the unary ++ operator
        //***********************************************************************

        public static BigInteger operator ++(BigInteger bi1)
        {
            var result = new BigInteger(bi1);

            long carry = 1;
            int index = 0;

            while (carry != 0 && index < MaxLength)
            {
                long val = (result._data[index]);
                val++;

                result._data[index] = (uint) (val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if (index > result.DataLength)
                result.DataLength = index;
            else
            {
                while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                    result.DataLength--;
            }

            // overflow check
            const int lastPos = MaxLength - 1;

            // overflow if initial value was +ve but ++ caused a sign
            // change to negative.

            if ((bi1._data[lastPos] & 0x80000000) == 0 &&
                (result._data[lastPos] & 0x80000000) != (bi1._data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Overflow in ++."));
            }
            return result;
        }
示例#5
0
        //***********************************************************************
        // Overloading of the unary -- operator
        //***********************************************************************

        public static BigInteger operator --(BigInteger bi1)
        {
            var result = new BigInteger(bi1);

            bool carryIn = true;
            int index = 0;

            while (carryIn && index < MaxLength)
            {
                long val = (result._data[index]);
                val--;

                result._data[index] = (uint) (val & 0xFFFFFFFF);

                if (val >= 0)
                    carryIn = false;

                index++;
            }

            if (index > result.DataLength)
                result.DataLength = index;

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check
            const int lastPos = MaxLength - 1;

            // overflow if initial value was -ve but -- caused a sign
            // change to positive.

            if ((bi1._data[lastPos] & 0x80000000) != 0 &&
                (result._data[lastPos] & 0x80000000) != (bi1._data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException("Underflow in --."));
            }

            return result;
        }
示例#6
0
        //***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        //
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        //
        // To obtain V(2n), we use the identity
        //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        //      V(2n+1) = V((n+1) + n)
        // and use the identity
        //      V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        //                   = V(n+1) * V(n) - Q^n * V(1)
        //                   = V(n+1) * V(n) - Q^n * P
        //
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        //
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        //
        // Where U(0) = 0 % n, U(1) = 1 % n
        //       V(0) = 2 % n, V(1) = P % n
        //***********************************************************************

        public static BigInteger[] LucasSequence(BigInteger p, BigInteger q,
                                                 BigInteger k, BigInteger n)
        {
            if (k.DataLength == 1 && k._data[0] == 0)
            {
                var result = new BigInteger[3];

                result[0] = 0;
                result[1] = 2%n;
                result[2] = 1%n;
                return result;
            }

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            var constant = new BigInteger();

            int nLen = n.DataLength << 1;
            constant._data[nLen] = 0x00000001;
            constant.DataLength = nLen + 1;

            constant = constant/n;

            // calculate values of s and t
            int s = 0;

            for (int index = 0; index < k.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((k._data[index] & mask) != 0)
                    {
                        index = k.DataLength; // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = k >> s;

            //Console.WriteLine("s = " + s + " t = " + t);
            return LucasSequenceHelper(p, q, t, n, constant, s);
        }
示例#7
0
        //***********************************************************************
        // Constructor (Default value provided by a string of digits of the
        //              specified base)
        //
        // Example (base 10)
        // -----------------
        // To initialize "a" with the default value of 1234 in base 10
        //      BigInteger a = new BigInteger("1234", 10)
        //
        // To initialize "a" with the default value of -1234
        //      BigInteger a = new BigInteger("-1234", 10)
        //
        // Example (base 16)
        // -----------------
        // To initialize "a" with the default value of 0x1D4F in base 16
        //      BigInteger a = new BigInteger("1D4F", 16)
        //
        // To initialize "a" with the default value of -0x1D4F
        //      BigInteger a = new BigInteger("-1D4F", 16)
        //
        // string values are specified in the <sign><magnitude>
        // format.
        //
        //***********************************************************************

        public BigInteger(string value, int radix)
        {
            var multiplier = new BigInteger(1);
            var result = new BigInteger();
            value = (value.ToUpper()).Trim();
            int limit = 0;

            if (value[0] == '-')
                limit = 1;

            for (int i = value.Length - 1; i >= limit; i--)
            {
                int posVal = value[i];

                if (posVal >= '0' && posVal <= '9')
                    posVal -= '0';
                else if (posVal >= 'A' && posVal <= 'Z')
                    posVal = (posVal - 'A') + 10;
                else
                    posVal = 9999999; // arbitrary large


                if (posVal >= radix)
                    throw (new ArithmeticException("Invalid string in constructor."));
                if (value[0] == '-')
                    posVal = -posVal;

                result = result + (multiplier*posVal);

                if ((i - 1) >= limit)
                    multiplier = multiplier*radix;
            }

            if (value[0] == '-') // negative values
            {
                if ((result._data[MaxLength - 1] & 0x80000000) == 0)
                    throw (new ArithmeticException("Negative underflow in constructor."));
            }
            else // positive values
            {
                if ((result._data[MaxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive overflow in constructor."));
            }

            _data = new uint[MaxLength];
            for (int i = 0; i < result.DataLength; i++)
                _data[i] = result._data[i];

            DataLength = result.DataLength;
        }
示例#8
0
        //***********************************************************************
        // Returns gcd(this, bi)
        //***********************************************************************

        public BigInteger Gcd(BigInteger bi)
        {
            BigInteger x;
            BigInteger y;

            if ((_data[MaxLength - 1] & 0x80000000) != 0) // negative
                x = -this;
            else
                x = this;

            if ((bi._data[MaxLength - 1] & 0x80000000) != 0) // negative
                y = -bi;
            else
                y = bi;

            BigInteger g = y;

            while (x.DataLength > 1 || (x.DataLength == 1 && x._data[0] != 0))
            {
                g = x;
                x = y%x;
                y = g;
            }

            return g;
        }
示例#9
0
        //***********************************************************************
        // Probabilistic prime test based on Fermat's little theorem
        //
        // for any a < p (p does not divide a) if
        //      a^(p-1) mod p != 1 then p is not prime.
        //
        // Otherwise, p is probably prime (pseudoprime to the chosen base).
        //
        // Returns
        // -------
        // True if "this" is a pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        // Note - this method is fast but fails for Carmichael numbers except
        // when the randomly chosen base is a factor of the number.
        //
        //***********************************************************************

        public bool FermatLittleTest(int confidence)
        {
            BigInteger thisVal;
            if ((_data[MaxLength - 1] & 0x80000000) != 0) // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._data[0] == 0 || thisVal._data[0] == 1)
                    return false;
                if (thisVal._data[0] == 2 || thisVal._data[0] == 3)
                    return true;
            }

            if ((thisVal._data[0] & 0x1) == 0) // even numbers
                return false;

            int bits = thisVal.BitCount();
            var a = new BigInteger();
            BigInteger pSub1 = thisVal - (new BigInteger(1));
            var rand = new StrongNumberProvider();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done) // generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = rand.GetNextInt()*bits;

                    a.GenRandomBits(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.Gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1)
                    return false;

                // calculate a^(p-1) mod p
                BigInteger expResult = a.ModPow(pSub1, thisVal);

                int resultLen = expResult.DataLength;

                // is NOT prime is a^(p-1) mod p != 1

                if (resultLen > 1 || (resultLen == 1 && expResult._data[0] != 1))
                {
                    //Console.WriteLine("a = " + a.ToString());
                    return false;
                }
            }

            return true;
        }
示例#10
0
        //***********************************************************************
        // Modulo Exponentiation
        //***********************************************************************

        public BigInteger ModPow(BigInteger exp, BigInteger n)
        {
            if ((exp._data[MaxLength - 1] & 0x80000000) != 0)
                throw (new ArithmeticException("Positive exponents only."));

            BigInteger resultNum = 1;
            BigInteger tempNum;
            bool thisNegative = false;

            if ((_data[MaxLength - 1] & 0x80000000) != 0) // negative this
            {
                tempNum = -this%n;
                thisNegative = true;
            }
            else
                tempNum = this%n; // ensures (tempNum * tempNum) < b^(2k)

            if ((n._data[MaxLength - 1] & 0x80000000) != 0) // negative n
                n = -n;

            // calculate constant = b^(2k) / m
            var constant = new BigInteger();

            int i = n.DataLength << 1;
            constant._data[i] = 0x00000001;
            constant.DataLength = i + 1;

            constant = constant/n;
            int totalBits = exp.BitCount();
            int count = 0;

            // perform squaring and multiply exponentiation
            for (int pos = 0; pos < exp.DataLength; pos++)
            {
                uint mask = 0x01;
                //Console.WriteLine("pos = " + pos);

                for (int index = 0; index < 32; index++)
                {
                    if ((exp._data[pos] & mask) != 0)
                        resultNum = BarrettReduction(resultNum*tempNum, n, constant);

                    mask <<= 1;

                    tempNum = BarrettReduction(tempNum*tempNum, n, constant);


                    if (tempNum.DataLength == 1 && tempNum._data[0] == 1)
                    {
                        if (thisNegative && (exp._data[0] & 0x1) != 0) //odd exp
                            return -resultNum;
                        return resultNum;
                    }
                    count++;
                    if (count == totalBits)
                        break;
                }
            }

            if (thisNegative && (exp._data[0] & 0x1) != 0) //odd exp
                return -resultNum;

            return resultNum;
        }
示例#11
0
        //***********************************************************************
        // Fast calculation of modular reduction using Barrett's reduction.
        // Requires x < b^(2k), where b is the base.  In this case, base is
        // 2^32 (uint).
        //
        // Reference [4]
        //***********************************************************************

        public static BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
        {
            int k = n.DataLength,
                kPlusOne = k + 1,
                kMinusOne = k - 1;

            var q1 = new BigInteger();

            // q1 = x / b^(k-1)
            for (int i = kMinusOne, j = 0; i < x.DataLength; i++, j++)
                q1._data[j] = x._data[i];
            q1.DataLength = x.DataLength - kMinusOne;
            if (q1.DataLength <= 0)
                q1.DataLength = 1;


            BigInteger q2 = q1*constant;
            var q3 = new BigInteger();

            // q3 = q2 / b^(k+1)
            for (int i = kPlusOne, j = 0; i < q2.DataLength; i++, j++)
                q3._data[j] = q2._data[i];
            q3.DataLength = q2.DataLength - kPlusOne;
            if (q3.DataLength <= 0)
                q3.DataLength = 1;


            // r1 = x mod b^(k+1)
            // i.e. keep the lowest (k+1) words
            var r1 = new BigInteger();
            int lengthToCopy = (x.DataLength > kPlusOne) ? kPlusOne : x.DataLength;
            for (int i = 0; i < lengthToCopy; i++)
                r1._data[i] = x._data[i];
            r1.DataLength = lengthToCopy;


            // r2 = (q3 * n) mod b^(k+1)
            // partial multiplication of q3 and n

            var r2 = new BigInteger();
            for (int i = 0; i < q3.DataLength; i++)
            {
                if (q3._data[i] == 0) continue;

                ulong mcarry = 0;
                int t = i;
                for (int j = 0; j < n.DataLength && t < kPlusOne; j++, t++)
                {
                    // t = i + j
                    ulong val = (q3._data[i]*(ulong) n._data[j]) +
                                r2._data[t] + mcarry;

                    r2._data[t] = (uint) (val & 0xFFFFFFFF);
                    mcarry = (val >> 32);
                }

                if (t < kPlusOne)
                    r2._data[t] = (uint) mcarry;
            }
            r2.DataLength = kPlusOne;
            while (r2.DataLength > 1 && r2._data[r2.DataLength - 1] == 0)
                r2.DataLength--;

            r1 -= r2;
            if ((r1._data[MaxLength - 1] & 0x80000000) != 0) // negative
            {
                var val = new BigInteger();
                val._data[kPlusOne] = 0x00000001;
                val.DataLength = kPlusOne + 1;
                r1 += val;
            }

            while (r1 >= n)
                r1 -= n;

            return r1;
        }
示例#12
0
        //***********************************************************************
        // Returns a string representing the BigInteger in sign-and-magnitude
        // format in the specified radix.
        //
        // Example
        // -------
        // If the value of BigInteger is -255 in base 10, then
        // ToString(16) returns "-FF"
        //
        //***********************************************************************

        public string ToString(int radix)
        {
            if (radix < 2 || radix > 36)
                throw (new ArgumentException("Radix must be >= 2 and <= 36"));

            const string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
            string result = "";

            BigInteger a = this;

            bool negative = false;
            if ((a._data[MaxLength - 1] & 0x80000000) != 0)
            {
                negative = true;
                try
                {
                    a = -a;
                }
                catch
                {
                }
            }

            var quotient = new BigInteger();
            var remainder = new BigInteger();
            var biRadix = new BigInteger(radix);

            if (a.DataLength == 1 && a._data[0] == 0)
                result = "0";
            else
            {
                while (a.DataLength > 1 || (a.DataLength == 1 && a._data[0] != 0))
                {
                    SingleByteDivide(a, biRadix, quotient, remainder);

                    if (remainder._data[0] < 10)
                        result = remainder._data[0] + result;
                    else
                        result = charSet[(int) remainder._data[0] - 10] + result;

                    a = quotient;
                }
                if (negative)
                    result = "-" + result;
            }

            return result;
        }
示例#13
0
        //***********************************************************************
        // Returns min(this, bi)
        //***********************************************************************

        public BigInteger Min(BigInteger bi)
        {
            return this < bi ? (new BigInteger(this)) : (new BigInteger(bi));
        }
示例#14
0
        //***********************************************************************
        // Returns max(this, bi)
        //***********************************************************************

        public BigInteger Max(BigInteger bi)
        {
            return this > bi ? (new BigInteger(this)) : (new BigInteger(bi));
        }
示例#15
0
        //***********************************************************************
        // Constructor (Default value provided by BigInteger)
        //***********************************************************************

        public BigInteger(BigInteger bi)
        {
            _data = new uint[MaxLength];

            DataLength = bi.DataLength;

            for (int i = 0; i < DataLength; i++)
                _data[i] = bi._data[i];
        }
示例#16
0
        //***********************************************************************
        // Probabilistic prime test based on Rabin-Miller's
        //
        // for any p > 0 with p - 1 = 2^s * t
        //
        // p is probably prime (strong pseudoprime) if for any a < p,
        // 1) a^t mod p = 1 or
        // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a strong pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool RabinMillerTest(int confidence)
        {
            BigInteger thisVal;
            if ((_data[MaxLength - 1] & 0x80000000) != 0) // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._data[0] == 0 || thisVal._data[0] == 1)
                    return false;
                if (thisVal._data[0] == 2 || thisVal._data[0] == 3)
                    return true;
            }

            if ((thisVal._data[0] & 0x1) == 0) // even numbers
                return false;


            // calculate values of s and t
            BigInteger pSub1 = thisVal - (new BigInteger(1));
            int s = 0;

            for (int index = 0; index < pSub1.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((pSub1._data[index] & mask) != 0)
                    {
                        index = pSub1.DataLength; // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = pSub1 >> s;

            int bits = thisVal.BitCount();
            var a = new BigInteger();
            var rand = new StrongNumberProvider();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done) // generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int) (rand.GetNextSingle()*bits);

                    a.GenRandomBits(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.Gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1)
                    return false;

                BigInteger b = a.ModPow(t, thisVal);

                bool result = false;

                if (b.DataLength == 1 && b._data[0] == 1) // a^t mod p = 1
                    result = true;

                for (int j = 0; result == false && j < s; j++)
                {
                    if (b == pSub1) // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                    {
                        result = true;
                        break;
                    }

                    b = (b*b)%thisVal;
                }

                if (result == false)
                    return false;
            }
            return true;
        }
示例#17
0
        //***********************************************************************
        // Returns a value that is equivalent to the integer square root
        // of the BigInteger.
        //
        // The integer square root of "this" is defined as the largest integer n
        // such that (n * n) <= this
        //
        //***********************************************************************

        public BigInteger Sqrt()
        {
            var numBits = (uint) BitCount();

            if ((numBits & 0x1) != 0) // odd number of bits
                numBits = (numBits >> 1) + 1;
            else
                numBits = (numBits >> 1);

            uint bytePos = numBits >> 5;
            var bitPos = (byte) (numBits & 0x1F);

            uint mask;

            var result = new BigInteger();
            if (bitPos == 0)
                mask = 0x80000000;
            else
            {
                mask = (uint) 1 << bitPos;
                bytePos++;
            }
            result.DataLength = (int) bytePos;

            for (int i = (int) bytePos - 1; i >= 0; i--)
            {
                while (mask != 0)
                {
                    // guess
                    result._data[i] ^= mask;

                    // undo the guess if its square is larger than this
                    if ((result*result) > this)
                        result._data[i] ^= mask;

                    mask >>= 1;
                }
                mask = 0x80000000;
            }
            return result;
        }
示例#18
0
        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool SolovayStrassenTest(int confidence)
        {
            BigInteger thisVal;
            if ((_data[MaxLength - 1] & 0x80000000) != 0) // negative
                thisVal = -this;
            else
                thisVal = this;

            if (thisVal.DataLength == 1)
            {
                // test small numbers
                if (thisVal._data[0] == 0 || thisVal._data[0] == 1)
                    return false;
                if (thisVal._data[0] == 2 || thisVal._data[0] == 3)
                    return true;
            }

            if ((thisVal._data[0] & 0x1) == 0) // even numbers
                return false;


            int bits = thisVal.BitCount();
            var a = new BigInteger();
            BigInteger pSub1 = thisVal - 1;
            BigInteger pSub1Shift = pSub1 >> 1;

            var rand = new StrongNumberProvider();

            for (int round = 0; round < confidence; round++)
            {
                bool done = false;

                while (!done) // generate a < n
                {
                    int testBits = 0;

                    // make sure "a" has at least 2 bits
                    while (testBits < 2)
                        testBits = (int) (rand.GetNextSingle()*bits);

                    a.GenRandomBits(testBits, rand);

                    int byteLen = a.DataLength;

                    // make sure "a" is not 0
                    if (byteLen > 1 || (byteLen == 1 && a._data[0] != 1))
                        done = true;
                }

                // check whether a factor exists (fix for version 1.03)
                BigInteger gcdTest = a.Gcd(thisVal);
                if (gcdTest.DataLength == 1 && gcdTest._data[0] != 1)
                    return false;

                // calculate a^((p-1)/2) mod p

                BigInteger expResult = a.ModPow(pSub1Shift, thisVal);
                if (expResult == pSub1)
                    expResult = -1;

                // calculate Jacobi symbol
                BigInteger jacob = Jacobi(a, thisVal);

                //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                // if they are different then it is not prime
                if (expResult != jacob)
                    return false;
            }

            return true;
        }
示例#19
0
        //***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        //
        // k must be odd.  i.e LSB == 1
        //***********************************************************************

        private static BigInteger[] LucasSequenceHelper(BigInteger p, BigInteger q,
                                                        BigInteger k, BigInteger n,
                                                        BigInteger constant, int s)
        {
            var result = new BigInteger[3];

            if ((k._data[0] & 0x00000001) == 0)
                throw (new ArgumentException("Argument k must be odd."));

            int numbits = k.BitCount();
            uint mask = (uint) 0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

            BigInteger v = 2%n,
                       qK = 1%n,
                       v1 = p%n,
                       u1 = qK;
            bool flag = true;

            for (int i = k.DataLength - 1; i >= 0; i--) // iterate on the binary expansion of k
            {
                //Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001) // last bit
                        break;

                    if ((k._data[i] & mask) != 0) // bit is set
                    {
                        // index doubling with addition

                        u1 = (u1*v1)%n;

                        v = ((v*v1) - (p*qK))%n;
                        v1 = BarrettReduction(v1*v1, n, constant);
                        v1 = (v1 - ((qK*q) << 1))%n;

                        if (flag)
                            flag = false;
                        else
                            qK = BarrettReduction(qK*qK, n, constant);

                        qK = (qK*q)%n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1*v) - qK)%n;

                        v1 = ((v*v1) - (p*qK))%n;
                        v = BarrettReduction(v*v, n, constant);
                        v = (v - (qK << 1))%n;

                        if (flag)
                        {
                            qK = q%n;
                            flag = false;
                        }
                        else
                            qK = BarrettReduction(qK*qK, n, constant);
                    }

                    mask >>= 1;
                }
                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

            u1 = ((u1*v) - qK)%n;
            v = ((v*v1) - (p*qK))%n;
            //if (flag)
            //    flag = false;
            //else
                qK = BarrettReduction(qK*qK, n, constant);

            qK = (qK*q)%n;


            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1*v)%n;
                v = ((v*v) - (qK << 1))%n;

                qK = BarrettReduction(qK*qK, n, constant);
            }

            result[0] = u1;
            result[1] = v;
            result[2] = qK;

            return result;
        }
示例#20
0
        private bool LucasStrongTestHelper(BigInteger thisVal)
        {
            // Do the test (selects D based on Selfridge)
            // Let D be the first element of the sequence
            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
            // Let P = 1, Q = (1-D) / 4

            long d = 5, sign = -1, dCount = 0;
            bool done = false;

            while (!done)
            {
                int jresult = Jacobi(d, thisVal);

                if (jresult == -1)
                    done = true; // J(D, this) = 1
                else
                {
                    if (jresult == 0 && Math.Abs(d) < thisVal) // divisor found
                        return false;

                    if (dCount == 20)
                    {
                        // check for square
                        BigInteger root = thisVal.Sqrt();
                        if (root*root == thisVal)
                            return false;
                    }

                    //Console.WriteLine(D);
                    d = (Math.Abs(d) + 2)*sign;
                    sign = -sign;
                }
                dCount++;
            }

            long q = (1 - d) >> 2;

            BigInteger pAdd1 = thisVal + 1;
            int s = 0;

            for (int index = 0; index < pAdd1.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((pAdd1._data[index] & mask) != 0)
                    {
                        index = pAdd1.DataLength; // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = pAdd1 >> s;

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            var constant = new BigInteger();

            int nLen = thisVal.DataLength << 1;
            constant._data[nLen] = 0x00000001;
            constant.DataLength = nLen + 1;

            constant = constant/thisVal;

            BigInteger[] lucas = LucasSequenceHelper(1, q, t, thisVal, constant, 0);
            bool isPrime = false;

            if ((lucas[0].DataLength == 1 && lucas[0]._data[0] == 0) ||
                (lucas[1].DataLength == 1 && lucas[1]._data[0] == 0))
            {
                // u(t) = 0 or V(t) = 0
                isPrime = true;
            }

            for (int i = 1; i < s; i++)
            {
                if (!isPrime)
                {
                    // doubling of index
                    lucas[1] = BarrettReduction(lucas[1]*lucas[1], thisVal, constant);
                    lucas[1] = (lucas[1] - (lucas[2] << 1))%thisVal;

                    //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                    if ((lucas[1].DataLength == 1 && lucas[1]._data[0] == 0))
                        isPrime = true;
                }

                lucas[2] = BarrettReduction(lucas[2]*lucas[2], thisVal, constant); //Q^k
            }


            if (isPrime) // additional checks for composite numbers
            {
                // If n is prime and gcd(n, Q) == 1, then
                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                BigInteger g = thisVal.Gcd(q);
                if (g.DataLength == 1 && g._data[0] == 1) // gcd(this, Q) == 1
                {
                    if ((lucas[2]._data[MaxLength - 1] & 0x80000000) != 0)
                        lucas[2] += thisVal;

                    BigInteger temp = (q*Jacobi(q, thisVal))%thisVal;
                    if ((temp._data[MaxLength - 1] & 0x80000000) != 0)
                        temp += thisVal;

                    if (lucas[2] != temp)
                        isPrime = false;
                }
            }

            return isPrime;
        }
示例#21
0
        //***********************************************************************
        // Overloading of addition operator
        //***********************************************************************

        public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
        {
            var result = new BigInteger
                             {DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength};


            long carry = 0;
            for (int i = 0; i < result.DataLength; i++)
            {
                long sum = bi1._data[i] + (long) bi2._data[i] + carry;
                carry = sum >> 32;
                result._data[i] = (uint) (sum & 0xFFFFFFFF);
            }

            if (carry != 0 && result.DataLength < MaxLength)
            {
                result._data[result.DataLength] = (uint) (carry);
                result.DataLength++;
            }

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;


            // overflow check
            const int lastPos = MaxLength - 1;
            if ((bi1._data[lastPos] & 0x80000000) == (bi2._data[lastPos] & 0x80000000) &&
                (result._data[lastPos] & 0x80000000) != (bi1._data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
示例#22
0
        //***********************************************************************
        // Computes the Jacobi Symbol for a and b.
        // Algorithm adapted from [3] and [4] with some optimizations
        //***********************************************************************

        public static int Jacobi(BigInteger a, BigInteger b)
        {
            // Jacobi defined only for odd integers
            if ((b._data[0] & 0x1) == 0)
                throw (new ArgumentException("Jacobi defined only for odd integers."));

            if (a >= b) a %= b;
            if (a.DataLength == 1 && a._data[0] == 0) return 0; // a == 0
            if (a.DataLength == 1 && a._data[0] == 1) return 1; // a == 1

            if (a < 0)
            {
                if ((((b - 1)._data[0]) & 0x2) == 0) //if( (((b-1) >> 1).data[0] & 0x1) == 0)
                    return Jacobi(-a, b);
                return -Jacobi(-a, b);
            }

            int e = 0;
            for (int index = 0; index < a.DataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((a._data[index] & mask) != 0)
                    {
                        index = a.DataLength; // to break the outer loop
                        break;
                    }
                    mask <<= 1;
                    e++;
                }
            }

            BigInteger a1 = a >> e;

            int s = 1;
            if ((e & 0x1) != 0 && ((b._data[0] & 0x7) == 3 || (b._data[0] & 0x7) == 5))
                s = -1;

            if ((b._data[0] & 0x3) == 3 && (a1._data[0] & 0x3) == 3)
                s = -s;

            return a1.DataLength == 1 && a1._data[0] == 1 ? s : s*Jacobi(b%a1, a1);
        }
示例#23
0
        //***********************************************************************
        // Overloading of subtraction operator
        //***********************************************************************

        public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
        {
            var result = new BigInteger
                             {DataLength = (bi1.DataLength > bi2.DataLength) ? bi1.DataLength : bi2.DataLength};


            long carryIn = 0;
            for (int i = 0; i < result.DataLength; i++)
            {
                long diff = bi1._data[i] - (long) bi2._data[i] - carryIn;
                result._data[i] = (uint) (diff & 0xFFFFFFFF);

                carryIn = diff < 0 ? 1 : 0;
            }

            // roll over to negative
            if (carryIn != 0)
            {
                for (int i = result.DataLength; i < MaxLength; i++)
                    result._data[i] = 0xFFFFFFFF;
                result.DataLength = MaxLength;
            }

            // fixed in v1.03 to give correct datalength for a - (-b)
            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check

            const int lastPos = MaxLength - 1;
            if ((bi1._data[lastPos] & 0x80000000) != (bi2._data[lastPos] & 0x80000000) &&
                (result._data[lastPos] & 0x80000000) != (bi1._data[lastPos] & 0x80000000))
            {
                throw (new ArithmeticException());
            }

            return result;
        }
示例#24
0
        //***********************************************************************
        // Generates a positive BigInteger that is probably prime.
        //***********************************************************************

        public static BigInteger GenPseudoPrime(int bits, int confidence, StrongNumberProvider rand)
        {
            var result = new BigInteger();
            bool done = false;

            while (!done)
            {
                result.GenRandomBits(bits, rand);
                result._data[0] |= 0x01; // make it odd

                // prime test
                done = result.IsProbablePrime(confidence);
            }
            return result;
        }
示例#25
0
        //***********************************************************************
        // Overloading of multiplication operator
        //***********************************************************************

        public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
        {
            const int lastPos = MaxLength - 1;
            bool bi1Neg = false, bi2Neg = false;

            // take the absolute value of the inputs
            try
            {
                if ((bi1._data[lastPos] & 0x80000000) != 0) // bi1 negative
                {
                    bi1Neg = true;
                    bi1 = -bi1;
                }
                if ((bi2._data[lastPos] & 0x80000000) != 0) // bi2 negative
                {
                    bi2Neg = true;
                    bi2 = -bi2;
                }
            }
            catch
            {
            }

            var result = new BigInteger();

            // multiply the absolute values
            try
            {
                for (int i = 0; i < bi1.DataLength; i++)
                {
                    if (bi1._data[i] == 0) continue;

                    ulong mcarry = 0;
                    for (int j = 0, k = i; j < bi2.DataLength; j++, k++)
                    {
                        // k = i + j
                        ulong val = (bi1._data[i]*(ulong) bi2._data[j]) +
                                    result._data[k] + mcarry;

                        result._data[k] = (uint) (val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }

                    if (mcarry != 0)
                        result._data[i + bi2.DataLength] = (uint) mcarry;
                }
            }
            catch (Exception)
            {
                throw (new ArithmeticException("Multiplication overflow."));
            }


            result.DataLength = bi1.DataLength + bi2.DataLength;
            if (result.DataLength > MaxLength)
                result.DataLength = MaxLength;

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;

            // overflow check (result is -ve)
            if ((result._data[lastPos] & 0x80000000) != 0)
            {
                if (bi1Neg != bi2Neg && result._data[lastPos] == 0x80000000) // different sign
                {
                    // handle the special case where multiplication produces
                    // a max negative number in 2's complement.

                    if (result.DataLength == 1)
                        return result;
                    bool isMaxNeg = true;
                    for (int i = 0; i < result.DataLength - 1 && isMaxNeg; i++)
                    {
                        if (result._data[i] != 0)
                            isMaxNeg = false;
                    }

                    if (isMaxNeg)
                        return result;
                }

                throw (new ArithmeticException("Multiplication overflow."));
            }

            // if input has different signs, then result is -ve
            if (bi1Neg != bi2Neg)
                return -result;

            return result;
        }
示例#26
0
        //***********************************************************************
        // Generates a random number with the specified number of bits such
        // that gcd(number, this) = 1
        //***********************************************************************

        public BigInteger GenCoPrime(int bits, StrongNumberProvider rand)
        {
            bool done = false;
            var result = new BigInteger();

            while (!done)
            {
                result.GenRandomBits(bits, rand);
                //Console.WriteLine(result.ToString(16));

                // gcd test
                BigInteger g = result.Gcd(this);
                if (g.DataLength == 1 && g._data[0] == 1)
                    done = true;
            }

            return result;
        }
示例#27
0
        //***********************************************************************
        // Overloading of unary >> operators
        //***********************************************************************

        public static BigInteger operator >>(BigInteger bi1, int shiftVal)
        {
            var result = new BigInteger(bi1);
            result.DataLength = ShiftRight(result._data, shiftVal);


            if ((bi1._data[MaxLength - 1] & 0x80000000) != 0) // negative
            {
                for (int i = MaxLength - 1; i >= result.DataLength; i--)
                    result._data[i] = 0xFFFFFFFF;

                uint mask = 0x80000000;
                for (int i = 0; i < 32; i++)
                {
                    if ((result._data[result.DataLength - 1] & mask) != 0)
                        break;

                    result._data[result.DataLength - 1] |= mask;
                    mask >>= 1;
                }
                result.DataLength = MaxLength;
            }

            return result;
        }
示例#28
0
        //***********************************************************************
        // Returns the modulo inverse of this.  Throws ArithmeticException if
        // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
        //***********************************************************************

        public BigInteger ModInverse(BigInteger modulus)
        {
            BigInteger[] p = {0, 1};
            var q = new BigInteger[2]; // quotients
            BigInteger[] r = {0, 0}; // remainders

            int step = 0;

            BigInteger a = modulus;
            BigInteger b = this;

            while (b.DataLength > 1 || (b.DataLength == 1 && b._data[0] != 0))
            {
                var quotient = new BigInteger();
                var remainder = new BigInteger();

                if (step > 1)
                {
                    BigInteger pval = (p[0] - (p[1]*q[0]))%modulus;
                    p[0] = p[1];
                    p[1] = pval;
                }

                if (b.DataLength == 1)
                    SingleByteDivide(a, b, quotient, remainder);
                else
                    MultiByteDivide(a, b, quotient, remainder);

                /*
				Console.WriteLine(quotient.dataLength);
				Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
								  b.ToString(10), quotient.ToString(10), remainder.ToString(10),
								  p[1].ToString(10));
				*/

                q[0] = q[1];
                r[0] = r[1];
                q[1] = quotient;
                r[1] = remainder;

                a = b;
                b = remainder;

                step++;
            }

            if (r[0].DataLength > 1 || (r[0].DataLength == 1 && r[0]._data[0] != 1))
                throw (new ArithmeticException("No inverse!"));

            BigInteger result = ((p[0] - (p[1]*q[0]))%modulus);

            if ((result._data[MaxLength - 1] & 0x80000000) != 0)
                result += modulus; // get the least positive modulus

            return result;
        }
示例#29
0
        //***********************************************************************
        // Overloading of the NEGATE operator (2's complement)
        //***********************************************************************

        public static BigInteger operator -(BigInteger bi1)
        {
            // handle neg of zero separately since it'll cause an overflow
            // if we proceed.

            if (bi1.DataLength == 1 && bi1._data[0] == 0)
                return (new BigInteger());

            var result = new BigInteger(bi1);

            // 1's complement
            for (int i = 0; i < MaxLength; i++)
                result._data[i] = (~(bi1._data[i]));

            // add one to result of 1's complement
            long carry = 1;
            int index = 0;

            while (carry != 0 && index < MaxLength)
            {
                long val = (result._data[index]);
                val++;

                result._data[index] = (uint) (val & 0xFFFFFFFF);
                carry = val >> 32;

                index++;
            }

            if ((bi1._data[MaxLength - 1] & 0x80000000) == (result._data[MaxLength - 1] & 0x80000000))
                throw (new ArithmeticException("Overflow in negation.\n"));

            result.DataLength = MaxLength;

            while (result.DataLength > 1 && result._data[result.DataLength - 1] == 0)
                result.DataLength--;
            return result;
        }
示例#30
0
        //***********************************************************************
        // Overloading of modulus operator
        //***********************************************************************

        public static BigInteger operator %(BigInteger bi1, BigInteger bi2)
        {
            var quotient = new BigInteger();
            var remainder = new BigInteger(bi1);

            const int lastPos = MaxLength - 1;
            bool dividendNeg = false;

            if ((bi1._data[lastPos] & 0x80000000) != 0) // bi1 negative
            {
                bi1 = -bi1;
                dividendNeg = true;
            }
            if ((bi2._data[lastPos] & 0x80000000) != 0) // bi2 negative
                bi2 = -bi2;

            if (bi1 < bi2)
            {
                return remainder;
            }

            if (bi2.DataLength == 1)
                SingleByteDivide(bi1, bi2, quotient, remainder);
            else
                MultiByteDivide(bi1, bi2, quotient, remainder);

            if (dividendNeg)
                return -remainder;

            return remainder;
        }