public static void StartLMCReconstruction() { var folder = Path.Combine(P9_DATA_FOLDER, "large/fits/meerkat_tiny/"); var data = MeasurementData.LoadLMC(folder); int gridSize = 3072; int subgridsize = 32; int kernelSize = 16; int max_nr_timesteps = 1024; double cellSize = 1.5 / 3600.0 * Math.PI / 180.0; int wLayerCount = 24; var maxW = 0.0; for (int i = 0; i < data.UVW.GetLength(0); i++) { for (int j = 0; j < data.UVW.GetLength(1); j++) { maxW = Math.Max(maxW, Math.Abs(data.UVW[i, j, 2])); } } maxW = Partitioner.MetersToLambda(maxW, data.Frequencies[data.Frequencies.Length - 1]); double wStep = maxW / (wLayerCount); var griddingConstants = new GriddingConstants(data.VisibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, wLayerCount, wStep); var obsName = "LMC"; var lambda = 1.0f; var alpha = 0.01f; var epsilon = 1e-5f; var maxMajorCycles = 5; MajorCycle.ReconstructSerialCD(obsName, data, griddingConstants, true, 16, maxMajorCycles, lambda, alpha, 30000, epsilon); MajorCycle.ReconstructPCDM(obsName, data, griddingConstants, 32, maxMajorCycles, 3, lambda, alpha, 30, epsilon); }
public static void StartSimulatedReconstruction() { var folder = Path.Combine(P9_DATA_FOLDER, "small/fits/simulation_point/"); var data = MeasurementData.LoadSimulatedPoints(folder); int gridSize = 256; int subgridsize = 8; int kernelSize = 4; int max_nr_timesteps = 1024; double cellSize = 1.0 / 3600.0 * Math.PI / 180.0; var griddingConstants = new GriddingConstants(data.VisibilitiesCount, gridSize, subgridsize, kernelSize, max_nr_timesteps, (float)cellSize, 1, 0.0f); var obsName = "simulated"; var lambda = 0.5f; var alpha = 0.2f; var epsilon = 1e-5f; var maxMajorCycles = 5; MajorCycle.ReconstructSerialCD(obsName, data, griddingConstants, true, 1, maxMajorCycles, lambda, alpha, 5000, epsilon); MajorCycle.ReconstructPCDM(obsName, data, griddingConstants, 1, maxMajorCycles, 1, lambda, alpha, 30, epsilon); }
/// <summary> /// Major cycle implementation for the Serial CD /// </summary> /// <param name="obsName"></param> /// <param name="data"></param> /// <param name="c"></param> /// <param name="useGPU"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructSerialCD(string obsName, MeasurementData data, GriddingConstants c, bool useGPU, int psfCutFactor, int maxMajorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.GridW(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); IDeconvolver deconvolver = null; if (useGPU & GPUSerialCD.IsGPUSupported()) { deconvolver = new GPUSerialCD(totalSize, psfCut, 1000); } else if (useGPU & !GPUSerialCD.IsGPUSupported()) { Console.WriteLine("GPU not supported by library. Switching to CPU implementation"); deconvolver = new FastSerialCD(totalSize, psfCut); } else { deconvolver = new FastSerialCD(totalSize, psfCut); } var psfBMap = psfCut; using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_serial_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var gradients = gCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(gradients); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = deconvolver.GetAbsMaxDiff(xImage, gradients, lambdaTrue, alpha); if (absMax >= MAJOR_EPSILON) { lastResult = deconvolver.Deconvolve(xImage, gradients, currentLambda, alpha, deconvIterations, deconvEpsilon); } if (lambda == currentLambda & !switchedToOtherPsf) { currentGCalculator = gCalculator2; lambda = lambdaTrue; maxLipschitz = PSF.CalcMaxLipschitz(psf); switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_serial_majorCycle" + cycle + ".fits"); currentWatch.Stop(); totalWatch.Stop(); if (absMax < MAJOR_EPSILON) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
/// <summary> /// Major cycle implemnentation for the parallel coordinate descent algorithm /// </summary> /// <param name="data"></param> /// <param name="c"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="maxMinorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructPCDM(string obsName, MeasurementData data, GriddingConstants c, int psfCutFactor, int maxMajorCycle, int maxMinorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.Grid(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(psf, 2); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, Environment.ProcessorCount, 1000); using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, psf)) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_pcdm_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < maxMinorCycle; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentGCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_EPSILON) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 40, deconvEpsilon); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(psf); currentGCalculator = gCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_pcdm_majorCycle" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }