public void TestNaiveBayesOnPrepAttachData() { var model = NaiveBayesTests.TrainModel(PrepAttachDataUtility.CreateTrainingStream()); Assert.NotNull(model); PrepAttachDataUtility.TestModel(model, 0.7897994553107205); }
public void TestNaiveBayes4() { var model = NaiveBayesTests.TrainModel(); var label = "politics"; var context = new string[0]; var e = new Event(label, context); NaiveBayesTests.TestModel(model, e, 7.0 / 12.0); }
public void TestNaiveBayes3() { var model = NaiveBayesTests.TrainModel(); var label = "politics"; var context = new[] { "bow=united" }; var e = new Event(label, context); // NaiveBayesTests.TestModel(model, e, 2.0 / 3.0); // Expected value without smoothing NaiveBayesTests.TestModel(model, e, 0.6655036407766989); // Expected value with smoothing }
public void TestNaiveBayes2() { var model = NaiveBayesTests.TrainModel(); var label = "sports"; var context = new[] { "bow=manchester", "bow=united" }; var e = new Event(label, context); // NaiveBayesTests.TestModel(model, e, 1.0); // Expected value without smoothing NaiveBayesTests.TestModel(model, e, 0.9658833555831029); // Expected value with smoothing }
public void TestNaiveBayes1() { var model = NaiveBayesTests.TrainModel(); var label = "politics"; var context = new[] { "bow=united", "bow=nations" }; var e = new Event(label, context); //NaiveBayesTests.TestModel(model, e, 1.0); // Expected value without smoothing NaiveBayesTests.TestModel(model, e, 0.9681650180264167); // Expected value with smoothing }
public void TestTextModelPersistence() { var model = NaiveBayesTests.TrainModel(); AbstractModel deserialized; using (var data = new MemoryStream()) { using (var writer = new PlainTextNaiveBayesModelWriter(model, new UnclosableStream(data))) writer.Persist(); data.Seek(0, SeekOrigin.Begin); using (var reader = new PlainTextNaiveBayesModelReader(data)) { deserialized = reader.GetModel(); } } Assert.NotNull(deserialized); Assert.IsInstanceOf <NaiveBayesModel>(deserialized); }