// Format of the dynamic block header: // 5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286) // 5 Bits: HDIST, # of Distance codes - 1 (1 - 32) // 4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19) // // (HCLEN + 4) x 3 bits: code lengths for the code length // alphabet given just above, in the order: 16, 17, 18, // 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 // // These code lengths are interpreted as 3-bit integers // (0-7); as above, a code length of 0 means the // corresponding symbol (literal/length or distance code // length) is not used. // // HLIT + 257 code lengths for the literal/length alphabet, // encoded using the code length Huffman code // // HDIST + 1 code lengths for the distance alphabet, // encoded using the code length Huffman code // // The code length repeat codes can cross from HLIT + 257 to the // HDIST + 1 code lengths. In other words, all code lengths form // a single sequence of HLIT + HDIST + 258 values. private bool DecodeDynamicBlockHeader() { switch (_state) { case InflaterState.ReadingNumLitCodes: _literalLengthCodeCount = _input.GetBits(5); if (_literalLengthCodeCount < 0) { return(false); } _literalLengthCodeCount += 257; _state = InflaterState.ReadingNumDistCodes; goto case InflaterState.ReadingNumDistCodes; case InflaterState.ReadingNumDistCodes: _distanceCodeCount = _input.GetBits(5); if (_distanceCodeCount < 0) { return(false); } _distanceCodeCount += 1; _state = InflaterState.ReadingNumCodeLengthCodes; goto case InflaterState.ReadingNumCodeLengthCodes; case InflaterState.ReadingNumCodeLengthCodes: _codeLengthCodeCount = _input.GetBits(4); if (_codeLengthCodeCount < 0) { return(false); } _codeLengthCodeCount += 4; _loopCounter = 0; _state = InflaterState.ReadingCodeLengthCodes; goto case InflaterState.ReadingCodeLengthCodes; case InflaterState.ReadingCodeLengthCodes: while (_loopCounter < _codeLengthCodeCount) { int bits = _input.GetBits(3); if (bits < 0) { return(false); } _codeLengthTreeCodeLength[S_CODE_ORDER[_loopCounter]] = (byte)bits; ++_loopCounter; } for (int i = _codeLengthCodeCount; i < S_CODE_ORDER.Length; i++) { _codeLengthTreeCodeLength[S_CODE_ORDER[i]] = 0; } // create huffman tree for code length _codeLengthTree = new HuffmanTree(_codeLengthTreeCodeLength); _codeArraySize = _literalLengthCodeCount + _distanceCodeCount; _loopCounter = 0; // reset loop count _state = InflaterState.ReadingTreeCodesBefore; goto case InflaterState.ReadingTreeCodesBefore; case InflaterState.ReadingTreeCodesBefore: case InflaterState.ReadingTreeCodesAfter: while (_loopCounter < _codeArraySize) { if (_state == InflaterState.ReadingTreeCodesBefore) { if ((_lengthCode = _codeLengthTree.GetNextSymbol(_input)) < 0) { return(false); } } // The alphabet for code lengths is as follows: // 0 - 15: Represent code lengths of 0 - 15 // 16: Copy the previous code length 3 - 6 times. // The next 2 bits indicate repeat length // (0 = 3, ... , 3 = 6) // Example: Codes 8, 16 (+2 bits 11), // 16 (+2 bits 10) will expand to // 12 code lengths of 8 (1 + 6 + 5) // 17: Repeat a code length of 0 for 3 - 10 times. // (3 bits of length) // 18: Repeat a code length of 0 for 11 - 138 times // (7 bits of length) if (_lengthCode <= 15) { _codeList[_loopCounter++] = (byte)_lengthCode; } else { int repeatCount; if (_lengthCode == 16) { if (!_input.EnsureBitsAvailable(2)) { _state = InflaterState.ReadingTreeCodesAfter; return(false); } if (_loopCounter == 0) { // can't have "prev code" on first code throw new InvalidDataException(); } byte previousCode = _codeList[_loopCounter - 1]; repeatCount = _input.GetBits(2) + 3; if (_loopCounter + repeatCount > _codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { _codeList[_loopCounter++] = previousCode; } } else if (_lengthCode == 17) { if (!_input.EnsureBitsAvailable(3)) { _state = InflaterState.ReadingTreeCodesAfter; return(false); } repeatCount = _input.GetBits(3) + 3; if (_loopCounter + repeatCount > _codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { _codeList[_loopCounter++] = 0; } } else { // code == 18 if (!_input.EnsureBitsAvailable(7)) { _state = InflaterState.ReadingTreeCodesAfter; return(false); } repeatCount = _input.GetBits(7) + 11; if (_loopCounter + repeatCount > _codeArraySize) { throw new InvalidDataException(); } for (int j = 0; j < repeatCount; j++) { _codeList[_loopCounter++] = 0; } } } _state = InflaterState.ReadingTreeCodesBefore; // we want to read the next code. } break; default: Debug./*Fail*/ Assert(false, "check why we are here!"); throw new InvalidDataException("Deflate64: unknown state"); } byte[] literalTreeCodeLength = new byte[HuffmanTree.MAX_LITERAL_TREE_ELEMENTS]; byte[] distanceTreeCodeLength = new byte[HuffmanTree.MAX_DIST_TREE_ELEMENTS]; // Create literal and distance tables Array.Copy(_codeList, 0, literalTreeCodeLength, 0, _literalLengthCodeCount); Array.Copy(_codeList, _literalLengthCodeCount, distanceTreeCodeLength, 0, _distanceCodeCount); // Make sure there is an end-of-block code, otherwise how could we ever end? if (literalTreeCodeLength[HuffmanTree.END_OF_BLOCK_CODE] == 0) { throw new InvalidDataException(); } _literalLengthTree = new HuffmanTree(literalTreeCodeLength); _distanceTree = new HuffmanTree(distanceTreeCodeLength); _state = InflaterState.DecodeTop; return(true); }
//Each block of compressed data begins with 3 header bits // containing the following data: // first bit BFINAL // next 2 bits BTYPE // Note that the header bits do not necessarily begin on a byte // boundary, since a block does not necessarily occupy an integral // number of bytes. // BFINAL is set if and only if this is the last block of the data // set. // BTYPE specifies how the data are compressed, as follows: // 00 - no compression // 01 - compressed with fixed Huffman codes // 10 - compressed with dynamic Huffman codes // 11 - reserved (error) // The only difference between the two compressed cases is how the // Huffman codes for the literal/length and distance alphabets are // defined. // // This function returns true for success (end of block or output window is full,) // false if we are short of input // private bool Decode() { bool eob = false; bool result = false; if (Finished()) { return(true); } //if (_hasFormatReader) //{ // if (_state == InflaterState.ReadingHeader) // { // if (!_formatReader.ReadHeader(_input)) // { // return false; // } // _state = InflaterState.ReadingBFinal; // } // else if (_state == InflaterState.StartReadingFooter || _state == InflaterState.ReadingFooter) // { // if (!_formatReader.ReadFooter(_input)) // return false; // _state = InflaterState.VerifyingFooter; // return true; // } //} if (_state == InflaterState.ReadingBFinal) { // reading bfinal bit // Need 1 bit if (!_input.EnsureBitsAvailable(1)) { return(false); } _bfinal = _input.GetBits(1); _state = InflaterState.ReadingBType; } if (_state == InflaterState.ReadingBType) { // Need 2 bits if (!_input.EnsureBitsAvailable(2)) { _state = InflaterState.ReadingBType; return(false); } _blockType = (BlockType)_input.GetBits(2); if (_blockType == BlockType.Dynamic) { _state = InflaterState.ReadingNumLitCodes; } else if (_blockType == BlockType.Static) { _literalLengthTree = HuffmanTree.StaticLiteralLengthTree; _distanceTree = HuffmanTree.StaticDistanceTree; _state = InflaterState.DecodeTop; } else if (_blockType == BlockType.Uncompressed) { _state = InflaterState.UncompressedAligning; } else { throw new InvalidDataException("Deflate64: unknown block type"); } } if (_blockType == BlockType.Dynamic) { if (_state < InflaterState.DecodeTop) { // we are reading the header result = DecodeDynamicBlockHeader(); } else { result = DecodeBlock(out eob); // this can returns true when output is full } } else if (_blockType == BlockType.Static) { result = DecodeBlock(out eob); } else if (_blockType == BlockType.Uncompressed) { result = DecodeUncompressedBlock(out eob); } else { throw new InvalidDataException("Deflate64: unknown block type"); } // // If we reached the end of the block and the block we were decoding had // bfinal=1 (final block) // if (eob && (_bfinal != 0)) { //if (_hasFormatReader) // _state = InflaterState.StartReadingFooter; //else _state = InflaterState.Done; } return(result); }