public static BoxAndWhisker OutlierQuartileMedian(double[] data, double xPosition) { var baw = new BoxAndWhisker(xPosition, data); var stats = new PopulationStats(data); baw.midline.position = stats.median; baw.whisker.max = stats.highOutliers.Length == 0 ? stats.maxNonOutlier : stats.Q3 + 1.5 * stats.IQR; baw.whisker.min = stats.lowOutliers.Length == 0 ? stats.minNonOutlier : stats.Q1 - 1.5 * stats.IQR; baw.box.max = stats.Q3; baw.box.min = stats.Q1; return(baw); }
public static BoxAndWhisker StdevStderrMean(double[] data, double xPosition) { var baw = new BoxAndWhisker(xPosition, data); var stats = new PopulationStats(data); baw.midline.position = stats.median; baw.whisker.max = stats.max; baw.whisker.min = stats.min; baw.box.max = stats.mean + stats.stDev; baw.box.min = stats.mean - stats.stDev; return(baw); }
public static BoxAndWhisker GetBoxAndWhisker_OutliersAndQuartiles(double[] data, double xPosition) { var baw = new BoxAndWhisker(xPosition); var stats = new PopulationStats(data); baw.midline.position = stats.median; baw.whisker.max = stats.highOutliers.Length == 0 ? stats.maxNonOutlier : stats.Q3 + 1.5 * stats.IQR; baw.whisker.min = stats.lowOutliers.Length == 0 ? stats.minNonOutlier : stats.Q1 - 1.5 * stats.IQR; baw.box.max = stats.Q3; baw.box.min = stats.Q1; List <double> pointsList = new List <double>(); pointsList.AddRange(stats.highOutliers); pointsList.AddRange(stats.lowOutliers); baw.points = pointsList.ToArray(); return(baw); }