private static readonly double JITTER = 1e-10d; // a small value used to protect against floating point noise #endregion Fields #region Methods public static RegressionResult Regress(SimplexConstant[] simplexConstants, double convergenceTolerance, int maxEvaluations, Func<double[], double> objectiveFunction) { // confirm that we are in a position to commence if (objectiveFunction == null) throw new InvalidOperationException("ObjectiveFunction must be set to a valid ObjectiveFunctionDelegate"); if (simplexConstants == null) throw new InvalidOperationException("SimplexConstants must be initialized"); // create the initial simplex int numDimensions = simplexConstants.Length; int numVertices = numDimensions + 1; Vector[] vertices = _initializeVertices(simplexConstants); double[] errorValues = new double[numVertices]; int evaluationCount = 0; TerminationReason terminationReason = TerminationReason.Unspecified; ErrorProfile errorProfile; errorValues = _initializeErrorValues(vertices, objectiveFunction); // iterate until we converge, or complete our permitted number of iterations while (true) { errorProfile = _evaluateSimplex(errorValues); // see if the range in point heights is small enough to exit if (_hasConverged(convergenceTolerance, errorProfile, errorValues)) { terminationReason = TerminationReason.Converged; break; } // attempt a reflection of the simplex double reflectionPointValue = _tryToScaleSimplex(-1.0, ref errorProfile, vertices, errorValues, objectiveFunction); ++evaluationCount; if (reflectionPointValue <= errorValues[errorProfile.LowestIndex]) { // it's better than the best point, so attempt an expansion of the simplex double expansionPointValue = _tryToScaleSimplex(2.0, ref errorProfile, vertices, errorValues, objectiveFunction); ++evaluationCount; } else if (reflectionPointValue >= errorValues[errorProfile.NextHighestIndex]) { // it would be worse than the second best point, so attempt a contraction to look // for an intermediate point double currentWorst = errorValues[errorProfile.HighestIndex]; double contractionPointValue = _tryToScaleSimplex(0.5, ref errorProfile, vertices, errorValues, objectiveFunction); ++evaluationCount; if (contractionPointValue >= currentWorst) { // that would be even worse, so let's try to contract uniformly towards the low point; // don't bother to update the error profile, we'll do it at the start of the // next iteration _shrinkSimplex(errorProfile, vertices, errorValues, objectiveFunction); evaluationCount += numVertices; // that required one function evaluation for each vertex; keep track } } // check to see if we have exceeded our alloted number of evaluations if (evaluationCount >= maxEvaluations) { terminationReason = TerminationReason.MaxFunctionEvaluations; break; } } RegressionResult regressionResult = new RegressionResult(terminationReason, vertices[errorProfile.LowestIndex].Components, errorValues[errorProfile.LowestIndex], evaluationCount); return regressionResult; }
/// <summary> /// Construct an initial simplex, given starting guesses for the constants, and /// initial step sizes for each dimension /// </summary> /// <param name="simplexConstants"></param> /// <returns></returns> private static Vector[] _initializeVertices(SimplexConstant[] simplexConstants) { int numDimensions = simplexConstants.Length; Vector[] vertices = new Vector[numDimensions + 1]; // define one point of the simplex as the given initial guesses Vector p0 = new Vector(numDimensions); for (int i = 0; i < numDimensions; i++) { p0[i] = simplexConstants[i].Value; } // now fill in the vertices, creating the additional points as: // P(i) = P(0) + Scale(i) * UnitVector(i) vertices[0] = p0; for (int i = 0; i < numDimensions; i++) { double scale = simplexConstants[i].InitialPerturbation; Vector unitVector = new Vector(numDimensions); unitVector[i] = 1; vertices[i + 1] = p0.Add(unitVector.Multiply(scale)); } return vertices; }