示例#1
0
 public static PointF[] GetMatchBoundingBox(HomographyMatrix homography, SURFFeatureData template)
 {
     if (homography != null) //Get RoI box
     {
         //draw a rectangle along the projected model
         PointF[] pts = new PointF[] {
             new PointF(template.GetImg().ROI.Left, template.GetImg().ROI.Bottom),
             new PointF(template.GetImg().ROI.Right, template.GetImg().ROI.Bottom),
             new PointF(template.GetImg().ROI.Right, template.GetImg().ROI.Top),
             new PointF(template.GetImg().ROI.Left, template.GetImg().ROI.Top)
         };
         homography.ProjectPoints(pts); //project points
         return(pts);
     }
     else
     {
         return(null);
     }
 }
示例#2
0
        public static Image <Bgr, byte> MatchSURFFeatureByBF(SURFFeatureData template, SURFFeatureData observedScene, out long processingTime, out int pairCount)
        {
            //This matrix indicates which row is valid for the matches.
            Matrix <byte> mask;
            //Number of nearest neighbors to search for
            int k = 5;
            //The distance different ratio which a match is consider unique, a good number will be 0.8 , NNDR match
            double uniquenessThreshold = 0.5;  //default 0.8

            //The resulting n*k matrix of descriptor index from the training descriptors
            Matrix <int>     trainIdx;
            HomographyMatrix homography = null;
            Stopwatch        watch;

            try
            {
                watch = Stopwatch.StartNew();
                #region Surf for CPU
                //match
                BruteForceMatcher <float> matcher = new BruteForceMatcher <float>(DistanceType.L2Sqr);
                matcher.Add(template.GetDescriptors());

                trainIdx = new Matrix <int>(observedScene.GetDescriptors().Rows, k);
                //The resulting n*k matrix of distance value from the training descriptors
                using (Matrix <float> distance = new Matrix <float>(observedScene.GetDescriptors().Rows, k))
                {
                    matcher.KnnMatch(observedScene.GetDescriptors(), trainIdx, distance, k, null);
                    mask = new Matrix <byte>(distance.Rows, 1);
                    mask.SetValue(255); //Mask is 拉式信號匹配
                    //http://stackoverflow.com/questions/21932861/how-does-features2dtoolbox-voteforuniqueness-work
                    //how the VoteForUniqueness work...
                    Features2DToolbox.VoteForUniqueness(distance, uniquenessThreshold, mask);
                }

                Image <Bgr, byte> result = null;

                int nonZeroCount = CvInvoke.cvCountNonZero(mask);         //means good match
                Console.WriteLine("VoteForUniqueness nonZeroCount=> " + nonZeroCount.ToString());
                if (nonZeroCount >= (template.GetKeyPoints().Size * 0.2)) //set 10
                {
                    //50 is model and mathing image rotation similarity ex: m1 = 60 m2 = 50 => 60 - 50 <=50 so is similar
                    nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(template.GetKeyPoints(), observedScene.GetKeyPoints(), trainIdx, mask, 1.2, 30); //default 1.5,10
                    Console.WriteLine("VoteForSizeAndOrientation nonZeroCount=> " + nonZeroCount.ToString());
                    if (nonZeroCount >= (template.GetKeyPoints().Size * 0.5))                                                                                   //default 4 ,set 15
                    {
                        homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(template.GetKeyPoints(), observedScene.GetKeyPoints(), trainIdx, mask, 5);
                    }

                    PointF[] matchPts = GetMatchBoundingBox(homography, template);

                    //Draw the matched keypoints
                    result = Features2DToolbox.DrawMatches(template.GetImg(), template.GetKeyPoints(), observedScene.GetImg(), observedScene.GetKeyPoints(),
                                                           trainIdx, new Bgr(255, 255, 255), new Bgr(255, 255, 255), mask, Features2DToolbox.KeypointDrawType.NOT_DRAW_SINGLE_POINTS);
                    if (matchPts != null)
                    {
                        result.DrawPolyline(Array.ConvertAll <PointF, Point>(matchPts, Point.Round), true, new Bgr(Color.Red), 2);
                    }
                }
                #endregion
                watch.Stop();
                //Console.WriteLine("\nCal SURF Match time=======\n=> " + watch.ElapsedTicks.ToString() + "ms\nCal SURF Match time=======");
                processingTime = watch.ElapsedMilliseconds;
                pairCount      = nonZeroCount;

                return(result);
            }
            catch (CvException ex)
            {
                System.Windows.Forms.MessageBox.Show(ex.ErrorMessage);
                processingTime = -1L;
                pairCount      = -1;
                return(null);
            }
        }