/// <summary> /// Checks if the texture sizes of the supplied texture informations match the given level /// </summary> /// <param name="lhs">Texture information to compare</param> /// <param name="rhs">Texture information to compare with</param> /// <param name="level">Mipmap level of this texture to compare with</param> /// <returns>True if the size matches with the level, false otherwise</returns> public static bool SizeMatches(TextureInfo lhs, TextureInfo rhs, int level) { return(Math.Max(1, lhs.Width >> level) == rhs.Width && Math.Max(1, lhs.Height >> level) == rhs.Height && Math.Max(1, lhs.GetDepth() >> level) == rhs.GetDepth()); }
/// <summary> /// Tries to find an existing texture, or create a new one if not found. /// </summary> /// <param name="info">Texture information of the texture to be found or created</param> /// <param name="flags">The texture search flags, defines texture comparison rules</param> /// <param name="sizeHint">A hint indicating the minimum used size for the texture</param> /// <returns>The texture</returns> public Texture FindOrCreateTexture(TextureInfo info, TextureSearchFlags flags = TextureSearchFlags.None, Size?sizeHint = null) { bool isSamplerTexture = (flags & TextureSearchFlags.ForSampler) != 0; bool isScalable = IsUpscaleCompatible(info); TextureScaleMode scaleMode = TextureScaleMode.Blacklisted; if (isScalable) { scaleMode = (flags & TextureSearchFlags.WithUpscale) != 0 ? TextureScaleMode.Scaled : TextureScaleMode.Eligible; } int sameAddressOverlapsCount; lock (_textures) { // Try to find a perfect texture match, with the same address and parameters. sameAddressOverlapsCount = _textures.FindOverlaps(info.Address, ref _textureOverlaps); } Texture texture = null; TextureMatchQuality bestQuality = TextureMatchQuality.NoMatch; for (int index = 0; index < sameAddressOverlapsCount; index++) { Texture overlap = _textureOverlaps[index]; TextureMatchQuality matchQuality = overlap.IsExactMatch(info, flags); if (matchQuality == TextureMatchQuality.Perfect) { texture = overlap; break; } else if (matchQuality > bestQuality) { texture = overlap; bestQuality = matchQuality; } } if (texture != null) { if (!isSamplerTexture) { // If not a sampler texture, it is managed by the auto delete // cache, ensure that it is on the "top" of the list to avoid // deletion. _cache.Lift(texture); } ChangeSizeIfNeeded(info, texture, isSamplerTexture, sizeHint); texture.SynchronizeMemory(); return(texture); } // Calculate texture sizes, used to find all overlapping textures. SizeInfo sizeInfo; if (info.Target == Target.TextureBuffer) { sizeInfo = new SizeInfo(info.Width * info.FormatInfo.BytesPerPixel); } else if (info.IsLinear) { sizeInfo = SizeCalculator.GetLinearTextureSize( info.Stride, info.Height, info.FormatInfo.BlockHeight); } else { sizeInfo = SizeCalculator.GetBlockLinearTextureSize( info.Width, info.Height, info.GetDepth(), info.Levels, info.GetLayers(), info.FormatInfo.BlockWidth, info.FormatInfo.BlockHeight, info.FormatInfo.BytesPerPixel, info.GobBlocksInY, info.GobBlocksInZ, info.GobBlocksInTileX); } // Find view compatible matches. ulong size = (ulong)sizeInfo.TotalSize; int overlapsCount; lock (_textures) { overlapsCount = _textures.FindOverlaps(info.Address, size, ref _textureOverlaps); } for (int index = 0; index < overlapsCount; index++) { Texture overlap = _textureOverlaps[index]; TextureViewCompatibility overlapCompatibility = overlap.IsViewCompatible(info, size, out int firstLayer, out int firstLevel); if (overlapCompatibility == TextureViewCompatibility.Full) { TextureInfo oInfo = AdjustSizes(overlap, info, firstLevel); if (!isSamplerTexture) { info = oInfo; } texture = overlap.CreateView(oInfo, sizeInfo, firstLayer, firstLevel); if (overlap.IsModified) { texture.SignalModified(); } ChangeSizeIfNeeded(info, texture, isSamplerTexture, sizeHint); break; } else if (overlapCompatibility == TextureViewCompatibility.CopyOnly) { // TODO: Copy rules for targets created after the container texture. See below. overlap.DisableMemoryTracking(); } } // No match, create a new texture. if (texture == null) { texture = new Texture(_context, info, sizeInfo, scaleMode); // Step 1: Find textures that are view compatible with the new texture. // Any textures that are incompatible will contain garbage data, so they should be removed where possible. int viewCompatible = 0; bool setData = isSamplerTexture || overlapsCount == 0 || flags.HasFlag(TextureSearchFlags.ForCopy); for (int index = 0; index < overlapsCount; index++) { Texture overlap = _textureOverlaps[index]; bool overlapInCache = overlap.CacheNode != null; TextureViewCompatibility compatibility = texture.IsViewCompatible(overlap.Info, overlap.Size, out int firstLayer, out int firstLevel); if (compatibility != TextureViewCompatibility.Incompatible) { if (_overlapInfo.Length != _textureOverlaps.Length) { Array.Resize(ref _overlapInfo, _textureOverlaps.Length); } _overlapInfo[viewCompatible] = new OverlapInfo(compatibility, firstLayer, firstLevel); _textureOverlaps[viewCompatible++] = overlap; } else if (overlapInCache || !setData) { if (info.GobBlocksInZ > 1 && info.GobBlocksInZ == overlap.Info.GobBlocksInZ) { // Allow overlapping slices of 3D textures. Could be improved in future by making sure the textures don't overlap. continue; } // The overlap texture is going to contain garbage data after we draw, or is generally incompatible. // If the texture cannot be entirely contained in the new address space, and one of its view children is compatible with us, // it must be flushed before removal, so that the data is not lost. // If the texture was modified since its last use, then that data is probably meant to go into this texture. // If the data has been modified by the CPU, then it also shouldn't be flushed. bool modified = overlap.ConsumeModified(); bool flush = overlapInCache && !modified && (overlap.Address <texture.Address || overlap.EndAddress> texture.EndAddress) && overlap.HasViewCompatibleChild(texture); setData |= modified || flush; if (overlapInCache) { _cache.Remove(overlap, flush); } } } // We need to synchronize before copying the old view data to the texture, // otherwise the copied data would be overwritten by a future synchronization. texture.InitializeData(false, setData); for (int index = 0; index < viewCompatible; index++) { Texture overlap = _textureOverlaps[index]; OverlapInfo oInfo = _overlapInfo[index]; if (oInfo.Compatibility != TextureViewCompatibility.Full) { continue; // Copy only compatibilty. } TextureInfo overlapInfo = AdjustSizes(texture, overlap.Info, oInfo.FirstLevel); TextureCreateInfo createInfo = GetCreateInfo(overlapInfo, _context.Capabilities, overlap.ScaleFactor); if (texture.ScaleFactor != overlap.ScaleFactor) { // A bit tricky, our new texture may need to contain an existing texture that is upscaled, but isn't itself. // In that case, we prefer the higher scale only if our format is render-target-like, otherwise we scale the view down before copy. texture.PropagateScale(overlap); } ITexture newView = texture.HostTexture.CreateView(createInfo, oInfo.FirstLayer, oInfo.FirstLevel); overlap.HostTexture.CopyTo(newView, 0, 0); // Inherit modification from overlapping texture, do that before replacing // the view since the replacement operation removes it from the list. if (overlap.IsModified) { texture.SignalModified(); } overlap.ReplaceView(texture, overlapInfo, newView, oInfo.FirstLayer, oInfo.FirstLevel); } // If the texture is a 3D texture, we need to additionally copy any slice // of the 3D texture to the newly created 3D texture. if (info.Target == Target.Texture3D && viewCompatible > 0) { // TODO: This copy can currently only happen when the 3D texture is created. // If a game clears and redraws the slices, we won't be able to copy the new data to the 3D texture. // Disable tracking to try keep at least the original data in there for as long as possible. texture.DisableMemoryTracking(); for (int index = 0; index < viewCompatible; index++) { Texture overlap = _textureOverlaps[index]; OverlapInfo oInfo = _overlapInfo[index]; if (oInfo.Compatibility != TextureViewCompatibility.Incompatible) { overlap.BlacklistScale(); overlap.HostTexture.CopyTo(texture.HostTexture, oInfo.FirstLayer, oInfo.FirstLevel); if (overlap.IsModified) { texture.SignalModified(); } } } } } // Sampler textures are managed by the texture pool, all other textures // are managed by the auto delete cache. if (!isSamplerTexture) { _cache.Add(texture); } lock (_textures) { _textures.Add(texture); } ShrinkOverlapsBufferIfNeeded(); return(texture); }
/// <summary> /// Gets a texture creation information from texture information. /// This can be used to create new host textures. /// </summary> /// <param name="info">Texture information</param> /// <param name="caps">GPU capabilities</param> /// <param name="scale">Texture scale factor, to be applied to the texture size</param> /// <returns>The texture creation information</returns> public static TextureCreateInfo GetCreateInfo(TextureInfo info, Capabilities caps, float scale) { FormatInfo formatInfo = TextureCompatibility.ToHostCompatibleFormat(info, caps); if (info.Target == Target.TextureBuffer) { // We assume that the host does not support signed normalized format // (as is the case with OpenGL), so we just use a unsigned format. // The shader will need the appropriate conversion code to compensate. switch (formatInfo.Format) { case Format.R8Snorm: formatInfo = new FormatInfo(Format.R8Sint, 1, 1, 1, 1); break; case Format.R16Snorm: formatInfo = new FormatInfo(Format.R16Sint, 1, 1, 2, 1); break; case Format.R8G8Snorm: formatInfo = new FormatInfo(Format.R8G8Sint, 1, 1, 2, 2); break; case Format.R16G16Snorm: formatInfo = new FormatInfo(Format.R16G16Sint, 1, 1, 4, 2); break; case Format.R8G8B8A8Snorm: formatInfo = new FormatInfo(Format.R8G8B8A8Sint, 1, 1, 4, 4); break; case Format.R16G16B16A16Snorm: formatInfo = new FormatInfo(Format.R16G16B16A16Sint, 1, 1, 8, 4); break; } } int width = info.Width / info.SamplesInX; int height = info.Height / info.SamplesInY; int depth = info.GetDepth() * info.GetLayers(); if (scale != 1f) { width = (int)MathF.Ceiling(width * scale); height = (int)MathF.Ceiling(height * scale); } return(new TextureCreateInfo( width, height, depth, info.Levels, info.Samples, formatInfo.BlockWidth, formatInfo.BlockHeight, formatInfo.BytesPerPixel, formatInfo.Format, info.DepthStencilMode, info.Target, info.SwizzleR, info.SwizzleG, info.SwizzleB, info.SwizzleA)); }
/// <summary> /// Checks if the texture sizes of the supplied texture information matches the given level of /// this texture. /// </summary> /// <param name="info">Texture information to compare with</param> /// <param name="level">Mipmap level of this texture to compare with</param> /// <returns>True if the size matches with the level, false otherwise</returns> public bool SizeMatches(TextureInfo info, int level) { return(Math.Max(1, Info.Width >> level) == info.Width && Math.Max(1, Info.Height >> level) == info.Height && Math.Max(1, Info.GetDepth() >> level) == info.GetDepth()); }
/// <summary> /// Tries to find an existing texture, or create a new one if not found. /// </summary> /// <param name="info">Texture information of the texture to be found or created</param> /// <param name="flags">The texture search flags, defines texture comparison rules</param> /// <returns>The texture</returns> public Texture FindOrCreateTexture(TextureInfo info, TextureSearchFlags flags = TextureSearchFlags.None) { bool isSamplerTexture = (flags & TextureSearchFlags.ForSampler) != 0; bool isScalable = IsUpscaleCompatible(info); TextureScaleMode scaleMode = TextureScaleMode.Blacklisted; if (isScalable) { scaleMode = (flags & TextureSearchFlags.WithUpscale) != 0 ? TextureScaleMode.Scaled : TextureScaleMode.Eligible; } // Try to find a perfect texture match, with the same address and parameters. int sameAddressOverlapsCount = _textures.FindOverlaps(info.Address, ref _textureOverlaps); for (int index = 0; index < sameAddressOverlapsCount; index++) { Texture overlap = _textureOverlaps[index]; if (overlap.IsPerfectMatch(info, flags)) { if (!isSamplerTexture) { // If not a sampler texture, it is managed by the auto delete // cache, ensure that it is on the "top" of the list to avoid // deletion. _cache.Lift(overlap); } else if (!TextureCompatibility.SizeMatches(overlap.Info, info)) { // If this is used for sampling, the size must match, // otherwise the shader would sample garbage data. // To fix that, we create a new texture with the correct // size, and copy the data from the old one to the new one. overlap.ChangeSize(info.Width, info.Height, info.DepthOrLayers); } overlap.SynchronizeMemory(); return(overlap); } } // Calculate texture sizes, used to find all overlapping textures. SizeInfo sizeInfo; if (info.Target == Target.TextureBuffer) { sizeInfo = new SizeInfo(info.Width * info.FormatInfo.BytesPerPixel); } else if (info.IsLinear) { sizeInfo = SizeCalculator.GetLinearTextureSize( info.Stride, info.Height, info.FormatInfo.BlockHeight); } else { sizeInfo = SizeCalculator.GetBlockLinearTextureSize( info.Width, info.Height, info.GetDepth(), info.Levels, info.GetLayers(), info.FormatInfo.BlockWidth, info.FormatInfo.BlockHeight, info.FormatInfo.BytesPerPixel, info.GobBlocksInY, info.GobBlocksInZ, info.GobBlocksInTileX); } // Find view compatible matches. ulong size = (ulong)sizeInfo.TotalSize; int overlapsCount = _textures.FindOverlaps(info.Address, size, ref _textureOverlaps); Texture texture = null; for (int index = 0; index < overlapsCount; index++) { Texture overlap = _textureOverlaps[index]; if (overlap.IsViewCompatible(info, size, out int firstLayer, out int firstLevel)) { if (!isSamplerTexture) { info = AdjustSizes(overlap, info, firstLevel); } texture = overlap.CreateView(info, sizeInfo, firstLayer, firstLevel); if (IsTextureModified(overlap)) { CacheTextureModified(texture); } // The size only matters (and is only really reliable) when the // texture is used on a sampler, because otherwise the size will be // aligned. if (!TextureCompatibility.SizeMatches(overlap.Info, info, firstLevel) && isSamplerTexture) { texture.ChangeSize(info.Width, info.Height, info.DepthOrLayers); } break; } } // No match, create a new texture. if (texture == null) { texture = new Texture(_context, info, sizeInfo, scaleMode); // We need to synchronize before copying the old view data to the texture, // otherwise the copied data would be overwritten by a future synchronization. texture.SynchronizeMemory(); for (int index = 0; index < overlapsCount; index++) { Texture overlap = _textureOverlaps[index]; if (texture.IsViewCompatible(overlap.Info, overlap.Size, out int firstLayer, out int firstLevel)) { TextureInfo overlapInfo = AdjustSizes(texture, overlap.Info, firstLevel); TextureCreateInfo createInfo = GetCreateInfo(overlapInfo, _context.Capabilities); if (texture.ScaleFactor != overlap.ScaleFactor) { // A bit tricky, our new texture may need to contain an existing texture that is upscaled, but isn't itself. // In that case, we prefer the higher scale only if our format is render-target-like, otherwise we scale the view down before copy. texture.PropagateScale(overlap); } ITexture newView = texture.HostTexture.CreateView(createInfo, firstLayer, firstLevel); overlap.HostTexture.CopyTo(newView, 0, 0); // Inherit modification from overlapping texture, do that before replacing // the view since the replacement operation removes it from the list. if (IsTextureModified(overlap)) { CacheTextureModified(texture); } overlap.ReplaceView(texture, overlapInfo, newView, firstLayer, firstLevel); } } // If the texture is a 3D texture, we need to additionally copy any slice // of the 3D texture to the newly created 3D texture. if (info.Target == Target.Texture3D) { for (int index = 0; index < overlapsCount; index++) { Texture overlap = _textureOverlaps[index]; if (texture.IsViewCompatible( overlap.Info, overlap.Size, isCopy: true, out int firstLayer, out int firstLevel)) { overlap.BlacklistScale(); overlap.HostTexture.CopyTo(texture.HostTexture, firstLayer, firstLevel); if (IsTextureModified(overlap)) { CacheTextureModified(texture); } } } } } // Sampler textures are managed by the texture pool, all other textures // are managed by the auto delete cache. if (!isSamplerTexture) { _cache.Add(texture); texture.Modified += CacheTextureModified; texture.Disposed += CacheTextureDisposed; } _textures.Add(texture); ShrinkOverlapsBufferIfNeeded(); return(texture); }
/// <summary> /// Gets texture information from a texture descriptor. /// </summary> /// <param name="descriptor">The texture descriptor</param> /// <param name="layerSize">Layer size for textures using a sub-range of mipmap levels, otherwise 0</param> /// <returns>The texture information</returns> private TextureInfo GetInfo(TextureDescriptor descriptor, out int layerSize) { int depthOrLayers = descriptor.UnpackDepth(); int levels = descriptor.UnpackLevels(); TextureMsaaMode msaaMode = descriptor.UnpackTextureMsaaMode(); int samplesInX = msaaMode.SamplesInX(); int samplesInY = msaaMode.SamplesInY(); int stride = descriptor.UnpackStride(); TextureDescriptorType descriptorType = descriptor.UnpackTextureDescriptorType(); bool isLinear = descriptorType == TextureDescriptorType.Linear; Target target = descriptor.UnpackTextureTarget().Convert((samplesInX | samplesInY) != 1); int width = target == Target.TextureBuffer ? descriptor.UnpackBufferTextureWidth() : descriptor.UnpackWidth(); int height = descriptor.UnpackHeight(); // We use 2D targets for 1D textures as that makes texture cache // management easier. We don't know the target for render target // and copies, so those would normally use 2D targets, which are // not compatible with 1D targets. By doing that we also allow those // to match when looking for compatible textures on the cache. if (target == Target.Texture1D) { target = Target.Texture2D; height = 1; } else if (target == Target.Texture1DArray) { target = Target.Texture2DArray; height = 1; } uint format = descriptor.UnpackFormat(); bool srgb = descriptor.UnpackSrgb(); ulong gpuVa = descriptor.UnpackAddress(); if (!FormatTable.TryGetTextureFormat(format, srgb, out FormatInfo formatInfo)) { if (gpuVa != 0 && (int)format > 0) { Logger.Error?.Print(LogClass.Gpu, $"Invalid texture format 0x{format:X} (sRGB: {srgb})."); } formatInfo = FormatInfo.Default; } int gobBlocksInY = descriptor.UnpackGobBlocksInY(); int gobBlocksInZ = descriptor.UnpackGobBlocksInZ(); int gobBlocksInTileX = descriptor.UnpackGobBlocksInTileX(); layerSize = 0; int minLod = descriptor.UnpackBaseLevel(); int maxLod = descriptor.UnpackMaxLevelInclusive(); // Linear textures don't support mipmaps, so we don't handle this case here. if ((minLod != 0 || maxLod + 1 != levels) && target != Target.TextureBuffer && !isLinear) { int depth = TextureInfo.GetDepth(target, depthOrLayers); int layers = TextureInfo.GetLayers(target, depthOrLayers); SizeInfo sizeInfo = SizeCalculator.GetBlockLinearTextureSize( width, height, depth, levels, layers, formatInfo.BlockWidth, formatInfo.BlockHeight, formatInfo.BytesPerPixel, gobBlocksInY, gobBlocksInZ, gobBlocksInTileX); layerSize = sizeInfo.LayerSize; if (minLod != 0 && minLod < levels) { // If the base level is not zero, we additionally add the mip level offset // to the address, this allows the texture manager to find the base level from the // address if there is a overlapping texture on the cache that can contain the new texture. gpuVa += (ulong)sizeInfo.GetMipOffset(minLod); width = Math.Max(1, width >> minLod); height = Math.Max(1, height >> minLod); if (target == Target.Texture3D) { depthOrLayers = Math.Max(1, depthOrLayers >> minLod); } (gobBlocksInY, gobBlocksInZ) = SizeCalculator.GetMipGobBlockSizes(height, depth, formatInfo.BlockHeight, gobBlocksInY, gobBlocksInZ); } levels = (maxLod - minLod) + 1; } SwizzleComponent swizzleR = descriptor.UnpackSwizzleR().Convert(); SwizzleComponent swizzleG = descriptor.UnpackSwizzleG().Convert(); SwizzleComponent swizzleB = descriptor.UnpackSwizzleB().Convert(); SwizzleComponent swizzleA = descriptor.UnpackSwizzleA().Convert(); DepthStencilMode depthStencilMode = GetDepthStencilMode( formatInfo.Format, swizzleR, swizzleG, swizzleB, swizzleA); if (formatInfo.Format.IsDepthOrStencil()) { swizzleR = SwizzleComponent.Red; swizzleG = SwizzleComponent.Red; swizzleB = SwizzleComponent.Red; if (depthStencilMode == DepthStencilMode.Depth) { swizzleA = SwizzleComponent.One; } else { swizzleA = SwizzleComponent.Red; } } return(new TextureInfo( gpuVa, width, height, depthOrLayers, levels, samplesInX, samplesInY, stride, isLinear, gobBlocksInY, gobBlocksInZ, gobBlocksInTileX, target, formatInfo, depthStencilMode, swizzleR, swizzleG, swizzleB, swizzleA)); }