LoadFromDisk() public method

Loads and returns a HMM that was previously serialized to disk.
public LoadFromDisk ( ) : HiddenMarkovModel
return HiddenMarkovModel
示例#1
0
        private void loadAllModels(string modelDirectoryName)
        {
            if (Directory.Exists(modelDirectoryName))
            {
                // Get all files of type .rec in the directory
                string[] files = Directory.GetFiles(modelDirectoryName, "*.dat");
                this.positionModels = new List<HiddenMarkovModel<MultivariateNormalDistribution>>();
                this.jointModels = new List<HiddenMarkovModel<MultivariateNormalDistribution>>();
                this.positionClasses = new List<string>();
                this.jointClasses = new List<string>();
                foreach (string s in files)
                {
                    string actName = Path.GetFileNameWithoutExtension(s);
                    // strip off the hmm_ from the beginning
                    actName = actName.Substring(4);
                    bool isJointAction = Util.shouldUseJVals(actName);

                    // Deserialize the model and add it to the correct classifier
                    SerializableHmm serMod = new SerializableHmm(actName, modelDirectoryName);
                    HiddenMarkovModel<MultivariateNormalDistribution> hmm = serMod.LoadFromDisk();
                    if (isJointAction)
                    {
                        jointModels.Add(hmm);
                        jointClasses.Add(actName);
                    }
                    else
                    {
                        positionModels.Add(hmm);
                        positionClasses.Add(actName);
                    }
                }

                jointActionClassifier = new SequenceClassifier<MultivariateNormalDistribution>(jointModels.ToArray());
                positionActionClassifier = new SequenceClassifier<MultivariateNormalDistribution>(positionModels.ToArray());
                // TODO(pbrook) if there is time we should add a threshold model to these SequenceClassifiers
            }
        }
示例#2
0
        private void train(List<string> datafiles)
        {
            double[][][] sequences = new double[datafiles.Count][][];
            // For each file
            string actName = "";
            string dirName = "";
            for (int i = 0; i < datafiles.Count; i++)
            {
                string fname = datafiles[i];
                actName = System.IO.Path.GetFileNameWithoutExtension(fname);
                dirName = System.IO.Path.GetDirectoryName(fname);
                // Read the file
                List<HumanSkeleton> seq = new List<HumanSkeleton>();
                using (StreamReader s = new StreamReader(fname))
                {
                    while (!s.EndOfStream)
                    {
                        seq.Add(new HumanSkeleton(s.ReadLine()));
                    }
                }
                // convert it into an actionSequence of humanskeletons
                ActionSequence<HumanSkeleton> actSeq = new ActionSequence<HumanSkeleton>(seq);
                // Convert that actionSequence in to a double[][]
                bool useJointVals = Util.shouldUseJVals(actName);
                double[][] trainSeq = actSeq.toArray(useJointVals);
                // add that to the sequences array
                sequences[i] = trainSeq;
            }

            bool doTrain = true;
            if (doTrain)
            {
                if (datafiles.Count > 0)
                {
                    //PrincipalComponentAnalysis pca = computePCA(sequences);
                    // train a HMM
                    //double[][][] projSeqs = getProjectedSequences(sequences, pca);
                    HiddenMarkovModel<MultivariateNormalDistribution> hmm = trainHMM(sequences);
                    // save it to filename.hmm
                    //SerializableHmm s = new SerializableHmm(actName, hmm, pca);
                    SerializableHmm s = new SerializableHmm(actName, hmm);
                    s.SaveToDisk();
                }
            }
            else
            {
                SerializableHmm ser = new SerializableHmm("wave right", MODEL_LIB_PATH);
                HiddenMarkovModel<MultivariateNormalDistribution> hmm = ser.LoadFromDisk();
                PrincipalComponentAnalysis pca = ser.getPCA();

                foreach (double[][] seq in sequences)
                {
                    double[,] data = jaggedToMulti(seq);
                    string fn = System.IO.Path.GetRandomFileName();
                    using (StreamWriter sr = new StreamWriter("Z:/WindowsFolders/Desktop/" + fn))
                    {
                        for (int i = 0; i < data.GetLength(0); i++)
                        {
                            for (int j = 0; j < data.GetLength(1); j++)
                            {
                                sr.Write(data[i, j] + " ");
                            }
                            sr.WriteLine();
                        }
                    }
                    //double[][] projSeq = getProjectedSequence(seq, pca);
                    double l = hmm.Evaluate(seq, false);
                    Console.WriteLine("Likelihood: " + l);
                }
            }
        }