示例#1
0
        public void addObstacle(KInt2 a, KInt2 b)
        {
            Obstacle first = new Obstacle();

            first.convex_ = true;
            Obstacle second = new Obstacle();

            second.convex_ = true;

            first.previous_  = second;
            second.previous_ = first;
            first.next_      = second;
            second.next_     = first;


            first.point_  = a;
            second.point_ = b;

            first.direction_  = RVOMath.normalize(KInt2.ToInt2(b.x - a.x, b.y - a.y));
            second.direction_ = -first.direction_;

            first.id_ = obstacles_.Count;
            obstacles_.Add(first);

            second.id_ = obstacles_.Count;
            obstacles_.Add(second);
        }
示例#2
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="numObstLines">Count of obstacle lines.</param>
         * <param name="beginLine">The line on which the 2-d linear program
         * failed.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, KInt radius, ref KInt2 result)
        {
            KInt distance = 0;

            for (int i = beginLine; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance)
                {
                    /* Result does not satisfy constraint of line i. */
                    IList <Line> projLines = new List <Line>();
                    for (int ii = 0; ii < numObstLines; ++ii)
                    {
                        projLines.Add(lines[ii]);
                    }

                    for (int j = numObstLines; j < i; ++j)
                    {
                        Line line = new Line();

                        KInt determinant = RVOMath.det(lines[i].direction, lines[j].direction);
                        if (RVOMath.fabs(determinant) <= 0)
                        {
                            /* Line i and line j are parallel. */
                            if (RVOMath.Dot(lines[i].direction, lines[j].direction) > 0)
                            {
                                /* Line i and line j point in the same direction. */

                                continue;
                            }
                            else
                            {
                                /* Line i and line j point in opposite direction. */
                                line.point = (lines[i].point + lines[j].point) / 2;
                            }
                        }
                        else
                        {
                            line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
                        }
                        line.direction = RVOMath.normalize((lines[j].direction - lines[i].direction));
                        projLines.Add(line);
                    }
                    KInt2 tempResult = result;
                    if (linearProgram2(projLines, radius, KInt2.ToInt2(-lines[i].direction.IntY, lines[i].direction.IntX), true, ref result) < projLines.Count)
                    {
                        /*
                         * This should in principle not happen. The result is by
                         * definition already in the feasible region of this
                         * linear program. If it fails, it is due to small
                         * floating point error, and the current result is kept.
                         */
                        result = tempResult;
                    }

                    distance = RVOMath.det(lines[i].direction, lines[i].point - result);
                }
            }
        }
示例#3
0
        /**
         * <summary>Computes the new velocity of this agent.</summary>
         */
        internal void computeNewVelocity()
        {
            orcaLines_.Clear();

            //KInt invTimeHorizonObst = 1 / timeHorizonObst_;

            KInt tempradius = radius_ / timeHorizonObst_;

            /* Create obstacle ORCA lines. */
            for (int i = 0; i < obstacleNeighbors_.Count; ++i)
            {
                Obstacle obstacle1 = obstacleNeighbors_[i].Value;
                Obstacle obstacle2 = obstacle1.next_;

                KInt2 relativePosition1 = obstacle1.point_ - position_;
                KInt2 relativePosition2 = obstacle2.point_ - position_;

                /*
                 * Check if velocity obstacle of obstacle is already taken care
                 * of by previously constructed obstacle ORCA lines.
                 */
                bool alreadyCovered = false;

                for (int j = 0; j < orcaLines_.Count; ++j)
                {
                    if (RVOMath.det(relativePosition1 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0 && RVOMath.det(relativePosition2 / timeHorizonObst_ - orcaLines_[j].point, orcaLines_[j].direction) - tempradius >= 0)
                    {
                        alreadyCovered = true;

                        break;
                    }
                }

                if (alreadyCovered)
                {
                    continue;
                }

                /* Not yet covered. Check for collisions. */
                KInt distSq1 = RVOMath.absSq(relativePosition1);
                KInt distSq2 = RVOMath.absSq(relativePosition2);

                KInt radiusSq = RVOMath.sqr(radius_);

                KInt2 obstacleVector = obstacle2.point_ - obstacle1.point_;
                KInt  s          = (-RVOMath.Dot(relativePosition1, obstacleVector)) / RVOMath.absSq(obstacleVector);
                KInt  distSqLine = RVOMath.absSq(-relativePosition1 - s * obstacleVector);

                Line line = new Line();

                if (s < 0 && distSq1 <= radiusSq)
                {
                    /* Collision with left vertex. Ignore if non-convex. */
                    if (obstacle1.convex_)
                    {
                        line.point     = KInt2.zero;
                        line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition1.IntY, relativePosition1.IntX));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s > 1 && distSq2 <= radiusSq)
                {
                    /*
                     * Collision with right vertex. Ignore if non-convex or if
                     * it will be taken care of by neighboring obstacle.
                     */
                    if (obstacle2.convex_ && RVOMath.det(relativePosition2, obstacle2.direction_) >= 0)
                    {
                        line.point     = KInt2.zero;
                        line.direction = RVOMath.normalize(KInt2.ToInt2(-relativePosition2.IntY, relativePosition2.IntX));
                        orcaLines_.Add(line);
                    }

                    continue;
                }
                else if (s >= 0 && s < 1 && distSqLine <= radiusSq)
                {
                    /* Collision with obstacle segment. */
                    line.point     = KInt2.zero;
                    line.direction = -obstacle1.direction_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * No collision. Compute legs. When obliquely viewed, both legs
                 * can come from a single vertex. Legs extend cut-off line when
                 * non-convex vertex.
                 */

                KInt2 leftLegDirection, rightLegDirection;

                if (s < 0 && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that left vertex
                     * defines velocity obstacle.
                     */
                    if (!obstacle1.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle2 = obstacle1;

                    KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                    leftLegDirection  = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                    rightLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 + relativePosition1.IntY * radius_, -relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                    if (isover(leftLegDirection) || isover(rightLegDirection))
                    {
                        UnityEngine.Debug.LogError("!!!");
                    }
                }
                else if (s > 1 && distSqLine <= radiusSq)
                {
                    /*
                     * Obstacle viewed obliquely so that
                     * right vertex defines velocity obstacle.
                     */
                    if (!obstacle2.convex_)
                    {
                        /* Ignore obstacle. */
                        continue;
                    }

                    obstacle1 = obstacle2;

                    KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq);
                    leftLegDirection  = KInt2.ToInt2(relativePosition2.IntX * leg2 - relativePosition2.IntY * radius_, relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                    rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                    if (isover(leftLegDirection) || isover(rightLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                }
                else
                {
                    /* Usual situation. */
                    if (obstacle1.convex_)
                    {
                        KInt leg1 = RVOMath.sqrt(distSq1 - radiusSq);
                        leftLegDirection = KInt2.ToInt2(relativePosition1.IntX * leg1 - relativePosition1.IntY * radius_, relativePosition1.IntX * radius_ + relativePosition1.IntY * leg1) / distSq1;
                        if (isover(leftLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                    else
                    {
                        /* Left vertex non-convex; left leg extends cut-off line. */
                        leftLegDirection = -obstacle1.direction_;
                        if (isover(leftLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }

                    if (obstacle2.convex_)
                    {
                        KInt leg2 = RVOMath.sqrt(distSq2 - radiusSq);

                        rightLegDirection = KInt2.ToInt2(relativePosition2.IntX * leg2 + relativePosition2.IntY * radius_, -relativePosition2.IntX * radius_ + relativePosition2.IntY * leg2) / distSq2;
                        if (isover(rightLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                    else
                    {
                        /* Right vertex non-convex; right leg extends cut-off line. */
                        rightLegDirection = obstacle1.direction_;
                        if (isover(rightLegDirection))
                        {
                            Debug.LogError("!!!");
                        }
                    }
                }

                /*
                 * Legs can never point into neighboring edge when convex
                 * vertex, take cutoff-line of neighboring edge instead. If
                 * velocity projected on "foreign" leg, no constraint is added.
                 */

                Obstacle leftNeighbor = obstacle1.previous_;

                bool isLeftLegForeign  = false;
                bool isRightLegForeign = false;

                if (obstacle1.convex_ && RVOMath.det(leftLegDirection, -leftNeighbor.direction_) >= 0)
                {
                    /* Left leg points into obstacle. */
                    leftLegDirection = -leftNeighbor.direction_;
                    if (isover(leftLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                    isLeftLegForeign = true;
                }

                if (obstacle2.convex_ && RVOMath.det(rightLegDirection, obstacle2.direction_) <= 0)
                {
                    /* Right leg points into obstacle. */
                    rightLegDirection = obstacle2.direction_;
                    isRightLegForeign = true;
                    if (isover(rightLegDirection))
                    {
                        Debug.LogError("!!!");
                    }
                }

                /* Compute cut-off centers. */
                KInt2 leftCutOff   = (obstacle1.point_ - position_) / timeHorizonObst_;
                KInt2 rightCutOff  = (obstacle2.point_ - position_) / timeHorizonObst_;
                KInt2 cutOffVector = rightCutOff - leftCutOff;

                /* Project current velocity on velocity obstacle. */

                /* Check if current velocity is projected on cutoff circles. */
                KInt sqvalue = RVOMath.absSq(cutOffVector);
                KInt t       = KInt.ToInt(KInt.divscale / 2);
                if (obstacle1 != obstacle2)
                {
                    if (sqvalue == 0)
                    {
                        t = KInt.MaxValue;
                    }
                    else
                    {
                        t = RVOMath.Dot((velocity_ - leftCutOff), cutOffVector) / sqvalue;
                    }
                }

                KInt tLeft  = RVOMath.Dot((velocity_ - leftCutOff), leftLegDirection);
                KInt tRight = RVOMath.Dot((velocity_ - rightCutOff), rightLegDirection);

                if ((t < 0 && tLeft < 0) || (obstacle1 == obstacle2 && tLeft < 0 && tRight < 0))
                {
                    /* Project on left cut-off circle. */
                    KInt2 unitW = RVOMath.normalize((velocity_ - leftCutOff));

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                    line.point     = leftCutOff + radius_ * unitW / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }
                else if (t > 1 && tRight < 0)
                {
                    /* Project on right cut-off circle. */
                    KInt2 unitW = RVOMath.normalize((velocity_ - rightCutOff));

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                    line.point     = rightCutOff + radius_ * unitW / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                /*
                 * Project on left leg, right leg, or cut-off line, whichever is
                 * closest to velocity.
                 */
                KInt distSqCutoff = (t < 0 || t > 1 || obstacle1 == obstacle2) ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + t * cutOffVector));
                KInt distSqLeft   = tLeft < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (leftCutOff + tLeft * leftLegDirection));
                KInt distSqRight  = tRight < 0 ? KInt.MaxValue : RVOMath.absSq(velocity_ - (rightCutOff + tRight * rightLegDirection));

                if (distSqCutoff <= distSqLeft && distSqCutoff <= distSqRight)
                {
                    /* Project on cut-off line. */
                    line.direction = -obstacle1.direction_;
                    line.point     = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                if (distSqLeft <= distSqRight)
                {
                    /* Project on left leg. */
                    if (isLeftLegForeign)
                    {
                        continue;
                    }

                    line.direction = leftLegDirection;
                    line.point     = leftCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                    orcaLines_.Add(line);

                    continue;
                }

                /* Project on right leg. */
                if (isRightLegForeign)
                {
                    continue;
                }

                line.direction = -rightLegDirection;
                line.point     = rightCutOff + radius_ * KInt2.ToInt2(-line.direction.IntY, line.direction.IntX) / timeHorizonObst_;
                orcaLines_.Add(line);
            }

            int numObstLines = orcaLines_.Count;

            //KInt invTimeHorizon = 1 / timeHorizon_;

            /* Create agent ORCA lines. */
            for (int i = 0; i < agentNeighbors_.Count; ++i)
            {
                Agent other = agentNeighbors_[i].Value;

                KInt2 relativePosition = other.position_ - position_;
                KInt2 relativeVelocity = velocity_ - other.velocity_;
                KInt  distSq           = RVOMath.absSq(relativePosition);
                KInt  combinedRadius   = radius_ + other.radius_;
                KInt  combinedRadiusSq = RVOMath.sqr(combinedRadius);

                Line  line = new Line();
                KInt2 u;

                if (distSq > combinedRadiusSq)
                {
                    /* No collision. */
                    KInt2 w = relativeVelocity - relativePosition / timeHorizon_;
                    /* Vector from cutoff center to relative velocity. */
                    KInt wLengthSq = RVOMath.absSq(w);

                    KInt dotProduct1 = RVOMath.Dot(w, relativePosition);

                    if (dotProduct1 < 0 && RVOMath.sqr(dotProduct1) > combinedRadiusSq * wLengthSq)
                    {
                        /* Project on cut-off circle. */
                        KInt wLength = RVOMath.sqrt(wLengthSq);
                        if (wLength == 0)
                        {
                            continue;
                        }
                        KInt2 unitW = w / wLength;

                        line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);
                        u = (combinedRadius / timeHorizon_ - wLength) * unitW;
                    }
                    else
                    {
                        /* Project on legs. */
                        KInt leg = RVOMath.sqrt(distSq - combinedRadiusSq);

                        if (RVOMath.det(relativePosition, w) > 0)
                        {
                            /* Project on left leg. */
                            line.direction = KInt2.ToInt2(relativePosition.IntX * leg - relativePosition.IntY * combinedRadius, relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq;
                        }
                        else
                        {
                            /* Project on right leg. */
                            line.direction = -KInt2.ToInt2(relativePosition.IntX * leg + relativePosition.IntY * combinedRadius, -relativePosition.IntX * combinedRadius + relativePosition.IntY * leg) / distSq;
                        }

                        KInt dotProduct2 = RVOMath.Dot(relativeVelocity, line.direction);
                        u = dotProduct2 * line.direction - relativeVelocity;
                    }
                }
                else
                {
                    /* Collision. Project on cut-off circle of time timeStep. */
                    //KInt invTimeStep = 1 / Simulator.Instance.timeStep_;
                    /* Vector from cutoff center to relative velocity. */
                    KInt2 w       = relativeVelocity - relativePosition / Simulator.Instance.timeStep_;
                    KInt  wLength = RVOMath.abs(w);
                    if (wLength == 0)
                    {
                        continue;
                    }
                    KInt2 unitW = w / wLength;

                    line.direction = KInt2.ToInt2(unitW.IntY, -unitW.IntX);

                    u = (combinedRadius / Simulator.Instance.timeStep_ - wLength) * unitW;
                }

                line.point = velocity_ + u / 2;
                orcaLines_.Add(line);
            }

            int lineFail = linearProgram2(orcaLines_, maxSpeed_, prefVelocity_, false, ref newVelocity_);

            if (lineFail < orcaLines_.Count)
            {
                linearProgram3(orcaLines_, numObstLines, lineFail, maxSpeed_, ref newVelocity_);
            }
        }
示例#4
0
 public void addObstacle(KInt3 a, KInt3 b)
 {
     addObstacle(KInt2.ToInt2(a.x, a.z), KInt2.ToInt2(b.x, b.z));
 }