示例#1
0
        /**
         * <summary>Recursive method for computing the obstacle neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which obstacle neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private void queryObstacleTreeRecursive(Agent agent, KInt rangeSq, ObstacleTreeNode node)
        {
            if (node != null)
            {
                Obstacle obstacle1 = node.obstacle_;
                Obstacle obstacle2 = obstacle1.next_;

                KInt agentLeftOfLine = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, agent.position_);

                queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.left_ : node.right_);
                if (RVOMath.absSq(obstacle2.point_ - obstacle1.point_) == 0)
                {
                    return;
                }

                KInt distSqLine = RVOMath.sqr(agentLeftOfLine) / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

                if (distSqLine < rangeSq)
                {
                    if (agentLeftOfLine < 0)
                    {
                        /*
                         * Try obstacle at this node only if agent is on right side of
                         * obstacle (and can see obstacle).
                         */
                        agent.insertObstacleNeighbor(node.obstacle_, rangeSq);
                    }

                    /* Try other side of line. */
                    queryObstacleTreeRecursive(agent, rangeSq, agentLeftOfLine >= 0 ? node.right_ : node.left_);
                }
            }
        }
示例#2
0
        /**
         * <summary>Inserts an agent neighbor into the set of neighbors of this
         * agent.</summary>
         *
         * <param name="agent">A pointer to the agent to be inserted.</param>
         * <param name="rangeSq">The squared range around this agent.</param>
         */
        internal void insertAgentNeighbor(Agent agent, ref KInt rangeSq)
        {
            if (this != agent)
            {
                KInt distSq = RVOMath.absSq(position_ - agent.position_);

                if (distSq < rangeSq)
                {
                    if (agentNeighbors_.Count < maxNeighbors_)
                    {
                        agentNeighbors_.Add(new KeyValuePair <KInt, Agent>(distSq, agent));
                    }

                    int i = agentNeighbors_.Count - 1;

                    while (i != 0 && distSq < agentNeighbors_[i - 1].Key)
                    {
                        agentNeighbors_[i] = agentNeighbors_[i - 1];
                        --i;
                    }

                    agentNeighbors_[i] = new KeyValuePair <KInt, Agent>(distSq, agent);

                    if (agentNeighbors_.Count == maxNeighbors_)
                    {
                        rangeSq = agentNeighbors_[agentNeighbors_.Count - 1].Key;
                    }
                }
            }
        }
示例#3
0
        public static KInt2 ToInt2(KInt x, KInt y)
        {
            KInt2 value = new KInt2();

            value._x = x.IntValue * divscale / KInt.divscale;
            value._y = y.IntValue * divscale / KInt.divscale;
            return(value);
        }
示例#4
0
 public int queryNearAgent(KInt2 point, KInt radius)
 {
     if (getNumAgents() == 0)
     {
         return(-1);
     }
     return(kdTree_.queryNearAgent(point, radius));
 }
示例#5
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="numObstLines">Count of obstacle lines.</param>
         * <param name="beginLine">The line on which the 2-d linear program
         * failed.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private void linearProgram3(IList <Line> lines, int numObstLines, int beginLine, KInt radius, ref KInt2 result)
        {
            KInt distance = 0;

            for (int i = beginLine; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > distance)
                {
                    /* Result does not satisfy constraint of line i. */
                    IList <Line> projLines = new List <Line>();
                    for (int ii = 0; ii < numObstLines; ++ii)
                    {
                        projLines.Add(lines[ii]);
                    }

                    for (int j = numObstLines; j < i; ++j)
                    {
                        Line line = new Line();

                        KInt determinant = RVOMath.det(lines[i].direction, lines[j].direction);
                        if (RVOMath.fabs(determinant) <= 0)
                        {
                            /* Line i and line j are parallel. */
                            if (RVOMath.Dot(lines[i].direction, lines[j].direction) > 0)
                            {
                                /* Line i and line j point in the same direction. */

                                continue;
                            }
                            else
                            {
                                /* Line i and line j point in opposite direction. */
                                line.point = (lines[i].point + lines[j].point) / 2;
                            }
                        }
                        else
                        {
                            line.point = lines[i].point + (RVOMath.det(lines[j].direction, lines[i].point - lines[j].point) / determinant) * lines[i].direction;
                        }
                        line.direction = RVOMath.normalize((lines[j].direction - lines[i].direction));
                        projLines.Add(line);
                    }
                    KInt2 tempResult = result;
                    if (linearProgram2(projLines, radius, KInt2.ToInt2(-lines[i].direction.IntY, lines[i].direction.IntX), true, ref result) < projLines.Count)
                    {
                        /*
                         * This should in principle not happen. The result is by
                         * definition already in the feasible region of this
                         * linear program. If it fails, it is due to small
                         * floating point error, and the current result is kept.
                         */
                        result = tempResult;
                    }

                    distance = RVOMath.det(lines[i].direction, lines[i].point - result);
                }
            }
        }
示例#6
0
        /**
         * <summary>Computes the absolute value of a float.</summary>
         *
         * <returns>The absolute value of the float.</returns>
         *
         * <param name="scalar">The float of which to compute the absolute
         * value.</param>
         */
        internal static KInt fabs(KInt scalar)
        {
            if (scalar < 0)
            {
                return(-scalar);
            }

            return(scalar);
        }
示例#7
0
        public static KInt3 ToInt3(KInt x, KInt y, KInt z)
        {
            KInt3 value = new KInt3();

            value._x = x.IntValue / KInt.divscale * divscale;
            value._y = y.IntValue / KInt.divscale * divscale;
            value._z = z.IntValue / KInt.divscale * divscale;
            return(value);
        }
示例#8
0
        private static KInt Min(KInt left, long right)
        {
            right = right * KInt.divscale / KInt2.divscale;
            if (left.IntValue < right)
            {
                return(left);
            }

            return(KInt.ToInt(right));
        }
示例#9
0
        private static KInt ReduceMax(KInt value, long right)
        {
            right = right * KInt.divscale / KInt2.divscale;
            KInt data = KInt.ToInt(value.IntValue - right);

            if (data <= 0)
            {
                return(KInt.Zero);
            }
            return(data);
        }
示例#10
0
        private static KInt ReduceMax(long left, KInt value)
        {
            left = left * KInt.divscale / KInt2.divscale;

            KInt data = KInt.ToInt(left - value.IntValue);

            if (data <= 0)
            {
                return(KInt.Zero);
            }
            return(data);
        }
示例#11
0
        internal int queryNearAgent(KInt2 point, KInt radius)
        {
            KInt rangeSq = KInt.MaxValue;
            int  agentNo = -1;

            queryAgentTreeRecursive(point, ref rangeSq, ref agentNo, 0);
            if (rangeSq < radius * radius)
            {
                return(agentNo);
            }
            return(-1);
        }
示例#12
0
        /**
         * <summary>Computes the neighbors of this agent.</summary>
         */
        internal void computeNeighbors()
        {
            obstacleNeighbors_.Clear();
            KInt rangeSq = RVOMath.sqr(timeHorizonObst_ * maxSpeed_ + radius_);

            Simulator.Instance.kdTree_.computeObstacleNeighbors(this, rangeSq);
            agentNeighbors_.Clear();

            if (maxNeighbors_ > 0)
            {
                rangeSq = RVOMath.sqr(neighborDist_);
                Simulator.Instance.kdTree_.computeAgentNeighbors(this, ref rangeSq);
            }
        }
示例#13
0
        /**
         * <summary>Clears the simulation.</summary>
         */
        public void Clear()
        {
            agents_            = new List <Agent>();
            agentNo2indexDict_ = new Dictionary <int, int>();
            index2agentNoDict_ = new Dictionary <int, int>();
            defaultAgent_      = null;
            kdTree_            = new KdTree();
            obstacles_         = new List <Obstacle>();
            globalTime_        = 0;
            isError            = false;
            timeStep_          = KInt.ToInt(KInt.divscale / 10);

            SetNumWorkers(0);
        }
示例#14
0
        /**
         * <summary>Sets the default properties for any new agent that is added.
         * </summary>
         *
         * <param name="neighborDist">The default maximum distance (center point
         * to center point) to other agents a new agent takes into account in
         * the navigation. The larger this number, the longer he running time of
         * the simulation. If the number is too low, the simulation will not be
         * safe. Must be non-negative.</param>
         * <param name="maxNeighbors">The default maximum number of other agents
         * a new agent takes into account in the navigation. The larger this
         * number, the longer the running time of the simulation. If the number
         * is too low, the simulation will not be safe.</param>
         * <param name="timeHorizon">The default minimal amount of time for
         * which a new agent's velocities that are computed by the simulation
         * are safe with respect to other agents. The larger this number, the
         * sooner an agent will respond to the presence of other agents, but the
         * less freedom the agent has in choosing its velocities. Must be
         * positive.</param>
         * <param name="timeHorizonObst">The default minimal amount of time for
         * which a new agent's velocities that are computed by the simulation
         * are safe with respect to obstacles. The larger this number, the
         * sooner an agent will respond to the presence of obstacles, but the
         * less freedom the agent has in choosing its velocities. Must be
         * positive.</param>
         * <param name="radius">The default radius of a new agent. Must be
         * non-negative.</param>
         * <param name="maxSpeed">The default maximum speed of a new agent. Must
         * be non-negative.</param>
         * <param name="velocity">The default initial two-dimensional linear
         * velocity of a new agent.</param>
         */
        public void setAgentDefaults(KInt neighborDist, int maxNeighbors, KInt timeHorizon, KInt timeHorizonObst, KInt radius, KInt maxSpeed, KInt2 velocity)
        {
            if (defaultAgent_ == null)
            {
                defaultAgent_ = new Agent();
            }

            defaultAgent_.maxNeighbors_    = maxNeighbors;
            defaultAgent_.maxSpeed_        = maxSpeed;
            defaultAgent_.neighborDist_    = neighborDist;
            defaultAgent_.radius_          = radius;
            defaultAgent_.timeHorizon_     = timeHorizon;
            defaultAgent_.timeHorizonObst_ = timeHorizonObst;
            defaultAgent_.velocity_        = velocity;
        }
示例#15
0
        /**
         * <summary>Computes the squared distance from a line segment with the
         * specified endpoints to a specified point.</summary>
         *
         * <returns>The squared distance from the line segment to the point.
         * </returns>
         *
         * <param name="vector1">The first endpoint of the line segment.</param>
         * <param name="vector2">The second endpoint of the line segment.
         * </param>
         * <param name="vector3">The point to which the squared distance is to
         * be calculated.</param>
         */
        internal static KInt distSqPointLineSegment(KInt2 vector1, KInt2 vector2, KInt2 vector3)
        {
            KInt r = Dot(vector3 - vector1, vector2 - vector1) / absSq(vector2 - vector1);// (v31.IntX * v21.IntX  + v31.IntY * v21.IntY) * KInt.divscale / KInt2.div2scale;

            if (r < 0)
            {
                return(absSq(vector3 - vector1));
            }

            if (r > 1)
            {
                return(absSq(vector3 - vector2));
            }

            return(absSq(vector3 - (vector1 + r * (vector2 - vector1))));
        }
示例#16
0
        private void queryAgentTreeRecursive(KInt2 position, ref KInt rangeSq, ref int agentNo, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    KInt distSq = RVOMath.absSq(position - agents_[i].position_);
                    if (distSq < rangeSq)
                    {
                        rangeSq = distSq;
                        agentNo = agents_[i].id_;
                    }
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, position.IntX)) + RVOMath.sqr(ReduceMax(position.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, position.IntY)) + RVOMath.sqr(ReduceMax(position.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(position, ref rangeSq, ref agentNo, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
示例#17
0
        /**
         * <summary>Adds a new agent to the simulation.</summary>
         *
         * <returns>The number of the agent.</returns>
         *
         * <param name="position">The two-dimensional starting position of this
         * agent.</param>
         * <param name="neighborDist">The maximum distance (center point to
         * center point) to other agents this agent takes into account in the
         * navigation. The larger this number, the longer the running time of
         * the simulation. If the number is too low, the simulation will not be
         * safe. Must be non-negative.</param>
         * <param name="maxNeighbors">The maximum number of other agents this
         * agent takes into account in the navigation. The larger this number,
         * the longer the running time of the simulation. If the number is too
         * low, the simulation will not be safe.</param>
         * <param name="timeHorizon">The minimal amount of time for which this
         * agent's velocities that are computed by the simulation are safe with
         * respect to other agents. The larger this number, the sooner this
         * agent will respond to the presence of other agents, but the less
         * freedom this agent has in choosing its velocities. Must be positive.
         * </param>
         * <param name="timeHorizonObst">The minimal amount of time for which
         * this agent's velocities that are computed by the simulation are safe
         * with respect to obstacles. The larger this number, the sooner this
         * agent will respond to the presence of obstacles, but the less freedom
         * this agent has in choosing its velocities. Must be positive.</param>
         * <param name="radius">The radius of this agent. Must be non-negative.
         * </param>
         * <param name="maxSpeed">The maximum speed of this agent. Must be
         * non-negative.</param>
         * <param name="velocity">The initial two-dimensional linear velocity of
         * this agent.</param>
         */
        public int addAgent(KInt2 position, KInt neighborDist, int maxNeighbors, KInt timeHorizon, KInt timeHorizonObst, KInt radius, KInt maxSpeed, KInt2 velocity)
        {
            Agent agent = new Agent();

            agent.id_ = s_totalID;
            s_totalID++;
            agent.maxNeighbors_    = maxNeighbors;
            agent.maxSpeed_        = maxSpeed;
            agent.neighborDist_    = neighborDist;
            agent.position_        = position;
            agent.radius_          = radius;
            agent.timeHorizon_     = timeHorizon;
            agent.timeHorizonObst_ = timeHorizonObst;
            agent.velocity_        = velocity;
            agents_.Add(agent);
            onAddAgent();
            return(agent.id_);
        }
示例#18
0
        /**
         * <summary>Inserts a static obstacle neighbor into the set of neighbors
         * of this agent.</summary>
         *
         * <param name="obstacle">The number of the static obstacle to be
         * inserted.</param>
         * <param name="rangeSq">The squared range around this agent.</param>
         */
        internal void insertObstacleNeighbor(Obstacle obstacle, KInt rangeSq)
        {
            Obstacle nextObstacle = obstacle.next_;

            KInt distSq = RVOMath.distSqPointLineSegment(obstacle.point_, nextObstacle.point_, position_);

            if (distSq < rangeSq)
            {
                obstacleNeighbors_.Add(new KeyValuePair <KInt, Obstacle>(distSq, obstacle));

                int i = obstacleNeighbors_.Count - 1;

                while (i != 0 && distSq < obstacleNeighbors_[i - 1].Key)
                {
                    obstacleNeighbors_[i] = obstacleNeighbors_[i - 1];
                    --i;
                }
                obstacleNeighbors_[i] = new KeyValuePair <KInt, Obstacle>(distSq, obstacle);
            }
        }
示例#19
0
        /**
         * <summary>Recursive method for computing the agent neighbors of the
         * specified agent.</summary>
         *
         * <param name="agent">The agent for which agent neighbors are to be
         * computed.</param>
         * <param name="rangeSq">The squared range around the agent.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void queryAgentTreeRecursive(Agent agent, ref KInt rangeSq, int node)
        {
            if (agentTree_[node].end_ - agentTree_[node].begin_ <= MAX_LEAF_SIZE)
            {
                for (int i = agentTree_[node].begin_; i < agentTree_[node].end_; ++i)
                {
                    agent.insertAgentNeighbor(agents_[i], ref rangeSq);
                }
            }
            else
            {
                KInt distSqLeft = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].left_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].left_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].left_].maxy));

                KInt distSqRight = RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].minx, agent.position_.IntX)) + RVOMath.sqr(ReduceMax(agent.position_.IntX, agentTree_[agentTree_[node].right_].maxx)) + RVOMath.sqr(ReduceMax(agentTree_[agentTree_[node].right_].miny, agent.position_.IntY)) + RVOMath.sqr(ReduceMax(agent.position_.IntY, agentTree_[agentTree_[node].right_].maxy));

                if (distSqLeft < distSqRight)
                {
                    if (distSqLeft < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);

                        if (distSqRight < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);
                        }
                    }
                }
                else
                {
                    if (distSqRight < rangeSq)
                    {
                        queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].right_);

                        if (distSqLeft < rangeSq)
                        {
                            queryAgentTreeRecursive(agent, ref rangeSq, agentTree_[node].left_);
                        }
                    }
                }
            }
        }
示例#20
0
        /**
         * <summary>Recursive method for querying the visibility between two
         * points within a specified radius.</summary>
         *
         * <returns>True if q1 and q2 are mutually visible within the radius;
         * false otherwise.</returns>
         *
         * <param name="q1">The first point between which visibility is to be
         * tested.</param>
         * <param name="q2">The second point between which visibility is to be
         * tested.</param>
         * <param name="radius">The radius within which visibility is to be
         * tested.</param>
         * <param name="node">The current obstacle k-D node.</param>
         */
        private bool queryVisibilityRecursive(KInt2 q1, KInt2 q2, KInt radius, ObstacleTreeNode node)
        {
            if (node == null)
            {
                return(true);
            }

            Obstacle obstacle1 = node.obstacle_;
            Obstacle obstacle2 = obstacle1.next_;

            KInt q1LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q1);
            KInt q2LeftOfI = RVOMath.leftOf(obstacle1.point_, obstacle2.point_, q2);
            KInt LengthI   = RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            // KInt invLengthI = 1.0f / RVOMath.absSq(obstacle2.point_ - obstacle1.point_);

            if (q1LeftOfI >= 0 && q2LeftOfI >= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.right_)));
            }

            if (q1LeftOfI <= 0 && q2LeftOfI <= 0)
            {
                return(queryVisibilityRecursive(q1, q2, radius, node.right_) && ((RVOMath.sqr(q1LeftOfI) / LengthI >= RVOMath.sqr(radius) && RVOMath.sqr(q2LeftOfI) / LengthI >= RVOMath.sqr(radius)) || queryVisibilityRecursive(q1, q2, radius, node.left_)));
            }

            if (q1LeftOfI >= 0 && q2LeftOfI <= 0)
            {
                /* One can see through obstacle from left to right. */
                return(queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
            }

            KInt point1LeftOfQ = RVOMath.leftOf(q1, q2, obstacle1.point_);
            KInt point2LeftOfQ = RVOMath.leftOf(q1, q2, obstacle2.point_);
            KInt LengthQ       = RVOMath.absSq(q2 - q1);

            // KInt invLengthQ = 1.0f / RVOMath.absSq(q2 - q1);

            return(point1LeftOfQ * point2LeftOfQ >= 0 && RVOMath.sqr(point1LeftOfQ) / LengthQ > RVOMath.sqr(radius) && RVOMath.sqr(point2LeftOfQ) / LengthQ > RVOMath.sqr(radius) && queryVisibilityRecursive(q1, q2, radius, node.left_) && queryVisibilityRecursive(q1, q2, radius, node.right_));
        }
示例#21
0
        /**
         * <summary>Solves a two-dimensional linear program subject to linear
         * constraints defined by lines and a circular constraint.</summary>
         *
         * <returns>The number of the line it fails on, and the number of lines
         * if successful.</returns>
         *
         * <param name="lines">Lines defining the linear constraints.</param>
         * <param name="radius">The radius of the circular constraint.</param>
         * <param name="optVelocity">The optimization velocity.</param>
         * <param name="directionOpt">True if the direction should be optimized.
         * </param>
         * <param name="result">A reference to the result of the linear program.
         * </param>
         */
        private int linearProgram2(IList <Line> lines, KInt radius, KInt2 optVelocity, bool directionOpt, ref KInt2 result)
        {
            if (directionOpt)
            {
                /*
                 * Optimize direction. Note that the optimization velocity is of
                 * unit length in this case.
                 */
                result = optVelocity * radius;
            }
            else if (RVOMath.absSq(optVelocity) > RVOMath.sqr(radius))
            {
                /* Optimize closest point and outside circle. */
                result = RVOMath.normalize(optVelocity) * radius;
            }
            else
            {
                /* Optimize closest point and inside circle. */
                result = optVelocity;
            }
            for (int i = 0; i < lines.Count; ++i)
            {
                if (RVOMath.det(lines[i].direction, lines[i].point - result) > 0)
                {
                    /* Result does not satisfy constraint i. Compute new optimal result. */
                    KInt2 tempResult = result;
                    if (!linearProgram1(lines, i, radius, optVelocity, directionOpt, ref result))
                    {
                        result = tempResult;
                        return(i);
                    }
                }
            }

            return(lines.Count);
        }
示例#22
0
 /**
  * <summary>Computes the obstacle neighbors of the specified agent.
  * </summary>
  *
  * <param name="agent">The agent for which obstacle neighbors are to be
  * computed.</param>
  * <param name="rangeSq">The squared range around the agent.</param>
  */
 internal void computeObstacleNeighbors(Agent agent, KInt rangeSq)
 {
     queryObstacleTreeRecursive(agent, rangeSq, obstacleTree_);
 }
示例#23
0
 /**
  * <summary>Computes the determinant of a two-dimensional square matrix
  * with rows consisting of the specified two-dimensional vectors.
  * </summary>
  *
  * <returns>The determinant of the two-dimensional square matrix.
  * </returns>
  *
  * <param name="vector1">The top row of the two-dimensional square
  * matrix.</param>
  * <param name="vector2">The bottom row of the two-dimensional square
  * matrix.</param>
  */
 internal static KInt det(KInt2 vector1, KInt2 vector2)
 {
     return(KInt.ToInt((vector1.IntX * vector2.IntY - vector1.IntY * vector2.IntX) * KInt.divscale / KInt2.div2scale));
 }
示例#24
0
        /**
         * <summary>Recursive method for building an obstacle k-D tree.
         * </summary>
         *
         * <returns>An obstacle k-D tree node.</returns>
         *
         * <param name="obstacles">A list of obstacles.</param>
         */
        private ObstacleTreeNode buildObstacleTreeRecursive(IList <Obstacle> obstacles)
        {
            if (obstacles.Count == 0)
            {
                return(null);
            }

            ObstacleTreeNode node = new ObstacleTreeNode();

            int optimalSplit = 0;
            int minLeft      = obstacles.Count;
            int minRight     = obstacles.Count;

            for (int i = 0; i < obstacles.Count; ++i)
            {
                int leftSize  = 0;
                int rightSize = 0;

                Obstacle obstacleI1 = obstacles[i];
                Obstacle obstacleI2 = obstacleI1.next_;

                /* Compute optimal split node. */

                for (int j = 0; j < obstacles.Count; ++j)
                {
                    if (i == j)
                    {
                        continue;
                    }

                    Obstacle obstacleJ1 = obstacles[j];
                    Obstacle obstacleJ2 = obstacleJ1.next_;

                    KInt j1LeftOfI = RVOMath.leftOf(obstacleI1.point_, obstacleI2.point_, obstacleJ1.point_);
                    KInt j2LeftOfI = RVOMath.leftOf(obstacleI1.point_, obstacleI2.point_, obstacleJ2.point_);

                    if (j1LeftOfI >= 0 && j2LeftOfI >= 0)
                    {
                        ++leftSize;
                    }
                    else if (j1LeftOfI <= 0 && j2LeftOfI <= 0)
                    {
                        ++rightSize;
                    }
                    else
                    {
                        ++leftSize;
                        ++rightSize;
                    }
                    if (!Less(Math.Max(leftSize, rightSize), Math.Min(leftSize, rightSize), Math.Max(minLeft, minRight), Math.Min(minLeft, minRight)))
                    {
                        break;
                    }
                }

                if (Less(Math.Max(leftSize, rightSize), Math.Min(leftSize, rightSize), Math.Max(minLeft, minRight), Math.Min(minLeft, minRight)))
                {
                    minLeft      = leftSize;
                    minRight     = rightSize;
                    optimalSplit = i;
                }
            }
            {
                /* Build split node. */
                IList <Obstacle> leftObstacles = new List <Obstacle>(minLeft);

                for (int n = 0; n < minLeft; ++n)
                {
                    leftObstacles.Add(null);
                }

                IList <Obstacle> rightObstacles = new List <Obstacle>(minRight);

                for (int n = 0; n < minRight; ++n)
                {
                    rightObstacles.Add(null);
                }

                int leftCounter  = 0;
                int rightCounter = 0;
                int i            = optimalSplit;

                Obstacle obstacleI1 = obstacles[i];
                Obstacle obstacleI2 = obstacleI1.next_;

                for (int j = 0; j < obstacles.Count; ++j)
                {
                    if (i == j)
                    {
                        continue;
                    }

                    Obstacle obstacleJ1 = obstacles[j];
                    Obstacle obstacleJ2 = obstacleJ1.next_;

                    KInt j1LeftOfI = RVOMath.leftOf(obstacleI1.point_, obstacleI2.point_, obstacleJ1.point_);
                    KInt j2LeftOfI = RVOMath.leftOf(obstacleI1.point_, obstacleI2.point_, obstacleJ2.point_);

                    if (j1LeftOfI >= 0 && j2LeftOfI >= 0)
                    {
                        leftObstacles[leftCounter++] = obstacles[j];
                    }
                    else if (j1LeftOfI <= 0 && j2LeftOfI <= 0)
                    {
                        rightObstacles[rightCounter++] = obstacles[j];
                    }
                    else
                    {
                        /* Split obstacle j. */
                        //KInt t = RVOMath.det(obstacleI2.point_ - obstacleI1.point_, obstacleJ1.point_ - obstacleI1.point_) / RVOMath.det(obstacleI2.point_ - obstacleI1.point_, obstacleJ1.point_ - obstacleJ2.point_);

                        KInt2 splitPoint = obstacleJ1.point_ + RVOMath.det(obstacleI2.point_ - obstacleI1.point_, obstacleJ1.point_ - obstacleI1.point_) * (obstacleJ2.point_ - obstacleJ1.point_) / RVOMath.det(obstacleI2.point_ - obstacleI1.point_, obstacleJ1.point_ - obstacleJ2.point_);

                        Obstacle newObstacle = new Obstacle();
                        newObstacle.point_     = splitPoint;
                        newObstacle.previous_  = obstacleJ1;
                        newObstacle.next_      = obstacleJ2;
                        newObstacle.convex_    = true;
                        newObstacle.direction_ = obstacleJ1.direction_;

                        newObstacle.id_ = Simulator.Instance.obstacles_.Count;

                        Simulator.Instance.obstacles_.Add(newObstacle);

                        obstacleJ1.next_     = newObstacle;
                        obstacleJ2.previous_ = newObstacle;

                        if (j1LeftOfI > 0)
                        {
                            leftObstacles[leftCounter++]   = obstacleJ1;
                            rightObstacles[rightCounter++] = newObstacle;
                        }
                        else
                        {
                            rightObstacles[rightCounter++] = obstacleJ1;
                            leftObstacles[leftCounter++]   = newObstacle;
                        }
                    }
                }

                node.obstacle_ = obstacleI1;
                node.left_     = buildObstacleTreeRecursive(leftObstacles);
                node.right_    = buildObstacleTreeRecursive(rightObstacles);

                return(node);
            }
        }
示例#25
0
 internal static KInt sqr(KInt scalar)
 {
     return(scalar.IntSqr);
 }
示例#26
0
        /**
         * <summary>Recursive method for building an agent k-D tree.</summary>
         *
         * <param name="begin">The beginning agent k-D tree node node index.
         * </param>
         * <param name="end">The ending agent k-D tree node index.</param>
         * <param name="node">The current agent k-D tree node index.</param>
         */
        private void buildAgentTreeRecursive(int begin, int end, int node)
        {
            agentTree_[node].begin_ = begin;
            agentTree_[node].end_   = end;
            agentTree_[node].minx   = agentTree_[node].maxx = KInt.ToInt(agents_[begin].position_.IntX * KInt.divscale / KInt2.divscale);
            agentTree_[node].miny   = agentTree_[node].maxy = KInt.ToInt(agents_[begin].position_.IntY * KInt.divscale / KInt2.divscale);

            for (int i = begin + 1; i < end; ++i)
            {
                agentTree_[node].maxx = Max(agentTree_[node].maxx, agents_[i].position_.IntX);
                agentTree_[node].minx = Min(agentTree_[node].minx, agents_[i].position_.IntX);
                agentTree_[node].maxy = Max(agentTree_[node].maxy, agents_[i].position_.IntY);
                agentTree_[node].miny = Min(agentTree_[node].miny, agents_[i].position_.IntY);
            }

            if (end - begin > MAX_LEAF_SIZE)
            {
                /* No leaf node. */
                bool isVertical   = agentTree_[node].maxx - agentTree_[node].minx > agentTree_[node].maxy - agentTree_[node].miny;
                KInt splitValue   = (isVertical ? agentTree_[node].maxx + agentTree_[node].minx : agentTree_[node].maxy + agentTree_[node].miny) / 2;
                long convertvalue = splitValue.IntValue * KInt2.divscale / KInt.divscale;

                int left  = begin;
                int right = end;

                while (left < right)
                {
                    while (left < right && (isVertical ? agents_[left].position_.IntX : agents_[left].position_.IntY) < convertvalue)
                    {
                        ++left;
                    }

                    while (right > left && (isVertical ? agents_[right - 1].position_.IntX : agents_[right - 1].position_.IntY) >= convertvalue)
                    {
                        --right;
                    }

                    if (left < right)
                    {
                        Agent tempAgent = agents_[left];
                        agents_[left]      = agents_[right - 1];
                        agents_[right - 1] = tempAgent;
                        ++left;
                        --right;
                    }
                }

                int leftSize = left - begin;

                if (leftSize == 0)
                {
                    ++leftSize;
                    ++left;
                    ++right;
                }

                agentTree_[node].left_  = node + 1;
                agentTree_[node].right_ = node + 2 * leftSize;

                buildAgentTreeRecursive(begin, left, agentTree_[node].left_);
                buildAgentTreeRecursive(left, end, agentTree_[node].right_);
            }
        }
示例#27
0
 internal static KInt sqrt(KInt scalar)
 {
     //return scalar.IntSqrt;
     return(KInt.ToInt(Sqrt(scalar.IntValue * KInt.divscale)));
 }
示例#28
0
 /**
  * <summary>Computes the squared length of a specified two-dimensional
  * vector.</summary>
  *
  * <returns>The squared length of the two-dimensional vector.</returns>
  *
  * <param name="vector">The two-dimensional vector whose squared length
  * is to be computed.</param>
  */
 public static KInt absSq(KInt2 vector)
 {
     return(KInt.ToInt((vector.IntX * vector.IntX + vector.IntY * vector.IntY) * KInt.divscale / KInt2.div2scale));
 }
示例#29
0
 /**
  * <summary>Computes the agent neighbors of the specified agent.
  * </summary>
  *
  * <param name="agent">The agent for which agent neighbors are to be
  * computed.</param>
  * <param name="rangeSq">The squared range around the agent.</param>
  */
 internal void computeAgentNeighbors(Agent agent, ref KInt rangeSq)
 {
     queryAgentTreeRecursive(agent, ref rangeSq, 0);
 }
示例#30
0
 /**
  * <summary>Queries the visibility between two points within a specified
  * radius.</summary>
  *
  * <returns>True if q1 and q2 are mutually visible within the radius;
  * false otherwise.</returns>
  *
  * <param name="q1">The first point between which visibility is to be
  * tested.</param>
  * <param name="q2">The second point between which visibility is to be
  * tested.</param>
  * <param name="radius">The radius within which visibility is to be
  * tested.</param>
  */
 internal bool queryVisibility(KInt2 q1, KInt2 q2, KInt radius)
 {
     return(queryVisibilityRecursive(q1, q2, radius, obstacleTree_));
 }