private static void Train() { Logger.LogFile = "RNNSharpConsole.log"; if (File.Exists(strTagFile) == false) { Logger.WriteLine(Logger.Level.err, "FAILED: The tag mapping file {0} isn't existed.", strTagFile); UsageTrain(); return; } //Load tag id and its name from file TagSet tagSet = new TagSet(strTagFile); //Create configuration instance and set parameters ModelSetting RNNConfig = new ModelSetting(); RNNConfig.ModelFile = strModelFile; RNNConfig.NumHidden = layersize; RNNConfig.IsCRFTraining = (iCRF == 1) ? true : false; RNNConfig.ModelDirection = iDir; RNNConfig.ModelType = modelType; RNNConfig.MaxIteration = maxIter; RNNConfig.SaveStep = savestep; RNNConfig.LearningRate = alpha; RNNConfig.Dropout = dropout; RNNConfig.Bptt = bptt; //Dump RNN setting on console RNNConfig.DumpSetting(); if (File.Exists(strFeatureConfigFile) == false) { Logger.WriteLine(Logger.Level.err, "FAILED: The feature configuration file {0} doesn't exist.", strFeatureConfigFile); UsageTrain(); return; } //Create feature extractors and load word embedding data from file Featurizer featurizer = new Featurizer(strFeatureConfigFile, tagSet); featurizer.ShowFeatureSize(); if (featurizer.IsRunTimeFeatureUsed() == true && iDir == 1) { Logger.WriteLine(Logger.Level.err, "FAILED: Run time feature is not available for bi-directional RNN model."); UsageTrain(); return; } if (File.Exists(strTrainFile) == false) { Logger.WriteLine(Logger.Level.err, "FAILED: The training corpus doesn't exist."); UsageTrain(); return; } if (File.Exists(strValidFile) == false) { Logger.WriteLine(Logger.Level.err, "FAILED: The validation corpus doesn't exist."); UsageTrain(); return; } //Create RNN encoder and save necessary parameters RNNEncoder encoder = new RNNEncoder(RNNConfig); //LoadFeatureConfig training corpus and extract feature set encoder.TrainingSet = new DataSet(tagSet.GetSize()); LoadDataset(strTrainFile, featurizer, encoder.TrainingSet); //LoadFeatureConfig validated corpus and extract feature set encoder.ValidationSet = new DataSet(tagSet.GetSize()); LoadDataset(strValidFile, featurizer, encoder.ValidationSet); if (iCRF == 1) { Logger.WriteLine(Logger.Level.info, "Initialize output tag bigram transition probability..."); //Build tag bigram transition matrix encoder.TrainingSet.BuildLabelBigramTransition(); } //Start to train the model encoder.Train(); }
private static void Train() { if (File.Exists(strTagFile) == false) { Console.WriteLine("FAILED: The tag mapping file {0} isn't existed.", strTagFile); UsageTrain(); return; } //Load tag id and its name from file TagSet tagSet = new TagSet(strTagFile); //Create configuration instance and set parameters ModelSetting RNNConfig = new ModelSetting(); RNNConfig.SetModelFile(strModelFile); RNNConfig.SetNumHidden(layersize); RNNConfig.SetCRFTraining((iCRF == 1) ? true : false); RNNConfig.SetDir(iDir); RNNConfig.SetModelType(modelType); RNNConfig.SetMaxIteration(maxIter); RNNConfig.SetSaveStep(savestep); RNNConfig.SetLearningRate(alpha); RNNConfig.SetRegularization(beta); RNNConfig.SetBptt(bptt); //Dump RNN setting on console RNNConfig.DumpSetting(); if (File.Exists(strFeatureConfigFile) == false) { Console.WriteLine("FAILED: The feature configuration file {0} isn't existed.", strFeatureConfigFile); UsageTrain(); return; } //Create feature extractors and load word embedding data from file Featurizer featurizer = new Featurizer(strFeatureConfigFile, tagSet); featurizer.ShowFeatureSize(); if (File.Exists(strTrainFile) == false) { Console.WriteLine("FAILED: The training corpus {0} isn't existed.", strTrainFile); UsageTrain(); return; } //LoadFeatureConfig training corpus and extract feature set DataSet dataSetTrain = new DataSet(tagSet.GetSize()); LoadDataset(strTrainFile, featurizer, dataSetTrain); if (File.Exists(strValidFile) == false) { Console.WriteLine("FAILED: The validated corpus {0} isn't existed.", strValidFile); UsageTrain(); return; } //LoadFeatureConfig validated corpus and extract feature set DataSet dataSetValidation = new DataSet(tagSet.GetSize()); LoadDataset(strValidFile, featurizer, dataSetValidation); //Create RNN encoder and save necessary parameters RNNEncoder encoder = new RNNEncoder(RNNConfig); encoder.SetTrainingSet(dataSetTrain); encoder.SetValidationSet(dataSetValidation); if (iCRF == 1) { Console.WriteLine("Initialize output tag bigram transition probability..."); //Build tag bigram transition matrix dataSetTrain.BuildLabelBigramTransition(); encoder.SetLabelBigramTransition(dataSetTrain.GetLabelBigramTransition()); } //Start to train the model encoder.Train(); }