示例#1
1
 private static void TestPendingFinalizersThreadingIssues(REngine e)
 {
     e.Evaluate("f <- function(a) {if (length(a)!= 1) stop('What goes on?')}");
     var f = e.Evaluate("f").AsFunction();
     try
     {
         e.Evaluate("f(letters[1:3])");
     }
     catch (EvaluationException)
     {
     }
     f.Invoke(e.CreateCharacterVector(new[] { "blah" }));
     try
     {
         f.Invoke(e.CreateCharacterVector(new[] { "blah", "blah" }));
     }
     catch (EvaluationException)
     {
         Console.WriteLine("Caught the expected exception");
     }
     f = null;
     GC.Collect();
     GC.WaitForPendingFinalizers();
     e.Dispose();
     Console.WriteLine("Just waiting for crash...");
     GC.Collect();
     GC.WaitForPendingFinalizers();
 }
示例#2
0
        static void Main(string[] args)
        {
            SetupPath(); // current process, soon to be deprecated

            // There are several options to initialize the engine, but by default the following suffice:
            REngine engine = REngine.GetInstance();

            engine.Initialize(); // required since v1.5

            // some random weight samples
            double[] weight = new double[] { 3.2, 3.6, 3.2, 1.7, 0.8, 2.9, 2, 1.4, 1.2, 2.1, 2.5, 3.9, 3.7, 2.4, 1.5, 0.9, 2.5, 1.7, 2.8, 2.1, 1.2 };
            double[] lenght = new double[] { 2, 3, 3.2, 4.7, 5.8, 3.9, 2, 8.4, 5.2, 4.1, 2.5, 3.9, 5, 2.4, 3.5, 0.9, 2.5, 2.7, 2.8, 2.1, 1.2 };

            // introduce the samples into R
            engine.SetSymbol("weight", engine.CreateNumericVector(weight));
            engine.SetSymbol("lenght", engine.CreateNumericVector(lenght));

            // set the weights and lenghts as a data frame (regular R syntax in string)
            engine.Evaluate("df <- data.frame(id=c(1:length(weight)), weight = weight,lenght = lenght )");


            // evaluate and retrieve mean
            double avg = engine.Evaluate("mean(df$weight)").AsNumeric().ToArray()[0];
            // same for standard deviation
            double std = engine.Evaluate("sd(df$weight)").AsNumeric().ToArray()[0];

            // NumericVector coeff = engine.Evaluate("coefficients(lm(df$weight ~ df$lenght ))").AsNumeric();
            // print output in console
            System.Globalization.CultureInfo ci = new System.Globalization.CultureInfo("en-gb");

            //Show in console the weight and lenght data
            Console.WriteLine(string.Format("Weights: ({0})", string.Join(",",
                                                                          weight.Select(f => f.ToString(ci)) // LINQ expression
                                                                          )));
            Console.WriteLine(string.Format("Length: ({0})", string.Join(",",
                                                                         lenght.Select(f => f.ToString(ci)) // LINQ expression
                                                                         )));
            Console.WriteLine(string.Format("Sample size: {0}", weight.Length));
            Console.WriteLine(string.Format(ci, "Average: {0:0.00}", avg));
            Console.WriteLine(string.Format(ci, "Standard deviation: {0:0.00}", std));

            var result = engine.Evaluate("lm(df$weight ~ df$lenght)");

            engine.SetSymbol("result", result);
            var    coefficients = result.AsList()["coefficients"].AsNumeric().ToList();
            double r2           = engine.Evaluate("summary(result)").AsList()["r.squared"].AsNumeric().ToList()[0];
            double intercept    = coefficients[0];
            double slope        = coefficients[1];

            Console.WriteLine("Intercept:" + intercept.ToString());
            Console.WriteLine("slope:" + slope);
            Console.WriteLine("r2:" + r2);

            string fileName = "myplot.png";

            CharacterVector fileNameVector = engine.CreateCharacterVector(new[] { fileName });

            engine.SetSymbol("fileName", fileNameVector);

            engine.Evaluate("png(filename=fileName, width=6, height=6, units='in', res=100)");
            engine.Evaluate("reg <- lm(df$weight ~ df$lenght)");
            engine.Evaluate("plot(df$weight ~ df$lenght)");
            engine.Evaluate("abline(reg)");
            engine.Evaluate("dev.off()");
            //The file will save in debug directory

            Application.Run(new Form1());
            // After disposing of the engine, you cannot reinitialize nor reuse it
            engine.Dispose();
        }