//Constructor /// <summary> /// Constructs an initialized instance /// </summary> /// <param name="net">FF network to be trained</param> /// <param name="inputVectorCollection">Predictors (input)</param> /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param> /// <param name="settings">Optional startup parameters of the trainer</param> public RidgeRegrTrainer(FeedForwardNetwork net, List <double[]> inputVectorCollection, List <double[]> outputVectorCollection, RidgeRegrTrainerSettings settings ) { //Check network readyness if (!net.Finalized) { throw new InvalidOperationException($"Can´t create trainer. Network structure was not finalized."); } //Check network conditions if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity)) { throw new InvalidOperationException($"Can´t create trainer. Network structure is not complient (single layer having Identity activation)."); } //Check samples conditions if (inputVectorCollection.Count == 0) { throw new InvalidOperationException($"Can´t create trainer. Missing training samples."); } //Collections _inputVectorCollection = new List <double[]>(inputVectorCollection); _outputVectorCollection = new List <double[]>(outputVectorCollection); //Parameters _settings = settings; MaxAttempt = _settings.NumOfAttempts; MaxAttemptEpoch = _settings.NumOfAttemptEpochs; Attempt = 1; AttemptEpoch = 0; _net = net; _outputSingleColVectorCollection = new List <Vector>(_net.NumOfOutputValues); for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++) { Vector outputSingleColVector = new Vector(outputVectorCollection.Count); for (int row = 0; row < outputVectorCollection.Count; row++) { //Output outputSingleColVector.Data[row] = outputVectorCollection[row][outputIdx]; } _outputSingleColVectorCollection.Add(outputSingleColVector); } //Lambda seeker _lambdaSeeker = new ParamSeeker(_settings.LambdaSeekerCfg); _currLambda = 0; //Matrix setup Matrix X = new Matrix(inputVectorCollection.Count, _net.NumOfInputValues + 1); for (int row = 0; row < inputVectorCollection.Count; row++) { //Add constant bias X.Data[row][0] = 1d; //Add predictors inputVectorCollection[row].CopyTo(X.Data[row], 1); } _XT = X.Transpose(); _XTdotX = _XT * X; _XTdotY = new Vector[_net.NumOfOutputValues]; for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++) { _XTdotY[outputIdx] = _XT * _outputSingleColVectorCollection[outputIdx]; } return; }
/// <summary> /// Deep copy constructor /// </summary> /// <param name="source">Source instance</param> public RidgeRegrTrainerSettings(RidgeRegrTrainerSettings source) { NumOfAttemptEpochs = source.NumOfAttemptEpochs; LambdaSeekerCfg = (ParamSeekerSettings)source.LambdaSeekerCfg.DeepClone(); return; }