//Methods /// <inheritdoc/> protected override void Check() { if (!FeedForwardNetwork.IsAllowedOutputAF(OutputActivationCfg)) { throw new ArgumentException($"Specified output activation function can't be used in FF network's output activation.", "OutputActivationCfg"); } if (TrainerCfg == null) { throw new ArgumentNullException("TrainerCfg", "TrainerCfg can not be null."); } Type trainerType = TrainerCfg.GetType(); if (trainerType != typeof(QRDRegrTrainerSettings) && trainerType != typeof(RidgeRegrTrainerSettings) && trainerType != typeof(ElasticRegrTrainerSettings) && trainerType != typeof(RPropTrainerSettings) ) { throw new ArgumentException($"Unsupported TrainerCfg {trainerType.Name}.", "TrainerCfg"); } if ((HiddenLayersCfg.HiddenLayerCfgCollection.Count > 0 || OutputActivationCfg.GetType() != typeof(AFAnalogIdentitySettings)) && trainerType != typeof(RPropTrainerSettings) ) { throw new ArgumentException($"Improper type of trainer {trainerType.Name}. For FF having other than Identity output activation or containing hidden layers can be used only Resilient back propagation trainer.", "TrainerCfg"); } return; }
//Methods /// <inheritdoc/> protected override void Check() { if (NumOfNeurons < 1) { throw new ArgumentException($"Invalid NumOfNeurons {NumOfNeurons.ToString(CultureInfo.InvariantCulture)}. NumOfNeurons must be GT 0.", "NumOfNeurons"); } if (!FeedForwardNetwork.IsAllowedHiddenAF(ActivationCfg)) { throw new ArgumentException($"Specified activation function can't be used in the hidden layer of a FF network.", "ActivationCfg"); } return; }
/// <inheritdoc/> public INonRecurrentNetwork DeepClone() { FeedForwardNetwork clone = new FeedForwardNetwork(NumOfInputValues, NumOfOutputValues) { NumOfNeurons = NumOfNeurons }; foreach (Layer layer in LayerCollection) { clone.LayerCollection.Add(layer.DeepClone()); } clone._flatWeights = (double[])_flatWeights.Clone(); clone._isAllowedNguyenWidrowRandomization = _isAllowedNguyenWidrowRandomization; return(clone); }
//Constructor /// <summary> /// Constructs an initialized instance /// </summary> /// <param name="net">FF network to be trained</param> /// <param name="inputVectorCollection">Predictors (input)</param> /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param> /// <param name="rand">Random object to be used for adding a white-noise to predictors</param> /// <param name="settings">Startup parameters of the trainer</param> public QRDRegrTrainer(FeedForwardNetwork net, List <double[]> inputVectorCollection, List <double[]> outputVectorCollection, QRDRegrTrainerSettings settings, Random rand ) { //Check network readyness if (!net.Finalized) { throw new InvalidOperationException($"Can´t create trainer. Network structure was not finalized."); } //Check network conditions if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity)) { throw new InvalidOperationException($"Can´t create trainer. Network structure is not complient (single layer having Identity activation)."); } //Check samples conditions if (inputVectorCollection.Count < inputVectorCollection[0].Length + 1) { throw new InvalidOperationException($"Can´t create trainer. Insufficient number of training samples {inputVectorCollection.Count}. Minimum is {(inputVectorCollection[0].Length + 1)}."); } //Parameters _settings = settings; MaxAttempt = _settings.NumOfAttempts; MaxAttemptEpoch = _settings.NumOfAttemptEpochs; _net = net; _rand = rand; _inputVectorCollection = inputVectorCollection; _outputVectorCollection = outputVectorCollection; _outputSingleColMatrixCollection = new List <Matrix>(_net.NumOfOutputValues); for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++) { Matrix outputSingleColMatrix = new Matrix(_outputVectorCollection.Count, 1); for (int row = 0; row < _outputVectorCollection.Count; row++) { //Output outputSingleColMatrix.Data[row][0] = _outputVectorCollection[row][outputIdx]; } _outputSingleColMatrixCollection.Add(outputSingleColMatrix); } //Start training attempt Attempt = 0; NextAttempt(); return; }
//Constructor /// <summary> /// Instantiates the RPropTrainer /// </summary> /// <param name="net">The FF network to be trained.</param> /// <param name="inputVectorCollection">The input vectors (input).</param> /// <param name="outputVectorCollection">The output vectors (ideal).</param> /// <param name="cfg">The configuration of the trainer.</param> /// <param name="rand">The random object to be used.</param> public RPropTrainer(FeedForwardNetwork net, List <double[]> inputVectorCollection, List <double[]> outputVectorCollection, RPropTrainerSettings cfg, Random rand ) { if (!net.Finalized) { throw new InvalidOperationException($"Can´t create trainer. Network structure was not finalized."); } _cfg = cfg; MaxAttempt = _cfg.NumOfAttempts; MaxAttemptEpoch = _cfg.NumOfAttemptEpochs; _net = net; _rand = rand; _inputVectorCollection = inputVectorCollection; _outputVectorCollection = outputVectorCollection; _weigthsGradsAcc = new double[_net.NumOfWeights]; _weigthsPrevGradsAcc = new double[_net.NumOfWeights]; _weigthsPrevDeltas = new double[_net.NumOfWeights]; _weigthsPrevChanges = new double[_net.NumOfWeights]; //Parallel gradient workers (batch ranges) preparation int numOfWorkers = Math.Max(1, Math.Min(Environment.ProcessorCount - 1, _inputVectorCollection.Count)); _gradientWorkerDataCollection = new GradientWorkerData[numOfWorkers]; int workerBatchSize = _inputVectorCollection.Count / numOfWorkers; for (int workerIdx = 0, fromRow = 0; workerIdx < numOfWorkers; workerIdx++, fromRow += workerBatchSize) { GradientWorkerData gwd = new GradientWorkerData ( fromRow: fromRow, toRow: (workerIdx == numOfWorkers - 1 ? _inputVectorCollection.Count - 1 : (fromRow + workerBatchSize) - 1), numOfWeights: _net.NumOfWeights ); _gradientWorkerDataCollection[workerIdx] = gwd; } InfoMessage = string.Empty; //Start training attempt Attempt = 0; NextAttempt(); return; }
//Constructor /// <summary> /// Creates an initialized instance. /// </summary> /// <param name="net">The FF network to be trained.</param> /// <param name="inputVectorCollection">The input vectors (input).</param> /// <param name="outputVectorCollection">The output vectors (ideal).</param> /// <param name="cfg">The configuration of the trainer.</param> public ElasticRegrTrainer(FeedForwardNetwork net, List <double[]> inputVectorCollection, List <double[]> outputVectorCollection, ElasticRegrTrainerSettings cfg ) { //Check network readyness if (!net.Finalized) { throw new InvalidOperationException($"Can´t create trainer. Network structure was not finalized."); } //Check network conditions if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is AFAnalogIdentity)) { throw new InvalidOperationException($"Can´t create trainer. Network structure is not complient (single layer having Identity activation)."); } //Check samples conditions if (inputVectorCollection.Count == 0) { throw new InvalidOperationException($"Can´t create trainer. Missing training samples."); } //Collections _inputVectorCollection = new List <double[]>(inputVectorCollection); _outputVectorCollection = new List <double[]>(outputVectorCollection); var rangePartitioner = Partitioner.Create(0, _inputVectorCollection.Count); _parallelRanges = new List <Tuple <int, int> >(rangePartitioner.GetDynamicPartitions()); //Parameters _cfg = cfg; MaxAttempt = _cfg.NumOfAttempts; MaxAttemptEpoch = _cfg.NumOfAttemptEpochs; Attempt = 1; AttemptEpoch = 0; _net = net; _gamma = _cfg.Lambda * _cfg.Alpha; return; }
//Constructor /// <summary> /// Constructs an initialized instance /// </summary> /// <param name="net">FF network to be trained</param> /// <param name="inputVectorCollection">Predictors (input)</param> /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param> /// <param name="settings">Optional startup parameters of the trainer</param> public RidgeRegrTrainer(FeedForwardNetwork net, List <double[]> inputVectorCollection, List <double[]> outputVectorCollection, RidgeRegrTrainerSettings settings ) { //Check network readyness if (!net.Finalized) { throw new InvalidOperationException($"Can´t create trainer. Network structure was not finalized."); } //Check network conditions if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity)) { throw new InvalidOperationException($"Can´t create trainer. Network structure is not complient (single layer having Identity activation)."); } //Check samples conditions if (inputVectorCollection.Count == 0) { throw new InvalidOperationException($"Can´t create trainer. Missing training samples."); } //Collections _inputVectorCollection = new List <double[]>(inputVectorCollection); _outputVectorCollection = new List <double[]>(outputVectorCollection); //Parameters _settings = settings; MaxAttempt = _settings.NumOfAttempts; MaxAttemptEpoch = _settings.NumOfAttemptEpochs; Attempt = 1; AttemptEpoch = 0; _net = net; _outputSingleColVectorCollection = new List <Vector>(_net.NumOfOutputValues); for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++) { Vector outputSingleColVector = new Vector(outputVectorCollection.Count); for (int row = 0; row < outputVectorCollection.Count; row++) { //Output outputSingleColVector.Data[row] = outputVectorCollection[row][outputIdx]; } _outputSingleColVectorCollection.Add(outputSingleColVector); } //Lambda seeker _lambdaSeeker = new ParamSeeker(_settings.LambdaSeekerCfg); _currLambda = 0; //Matrix setup Matrix X = new Matrix(inputVectorCollection.Count, _net.NumOfInputValues + 1); for (int row = 0; row < inputVectorCollection.Count; row++) { //Add constant bias X.Data[row][0] = 1d; //Add predictors inputVectorCollection[row].CopyTo(X.Data[row], 1); } _XT = X.Transpose(); _XTdotX = _XT * X; _XTdotY = new Vector[_net.NumOfOutputValues]; for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++) { _XTdotY[outputIdx] = _XT * _outputSingleColVectorCollection[outputIdx]; } return; }