示例#1
0
        //Constructor
        /// <summary>
        /// Constructs new instance of linear regression trainer
        /// </summary>
        /// <param name="net">FF network to be trained</param>
        /// <param name="inputVectorCollection">Predictors (input)</param>
        /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param>
        /// <param name="maxEpoch">Maximum allowed training epochs</param>
        /// <param name="rand">Random object to be used for adding a white-noise to predictors</param>
        /// <param name="settings">Optional startup parameters of the trainer</param>
        public LinRegrTrainer(FeedForwardNetwork net,
                              List <double[]> inputVectorCollection,
                              List <double[]> outputVectorCollection,
                              int maxEpoch,
                              System.Random rand,
                              LinRegrTrainerSettings settings = null
                              )
        {
            //Check network readyness
            if (!net.Finalized)
            {
                throw new Exception("Can´t create LinRegr trainer. Network structure was not finalized.");
            }
            //Check network conditions
            if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity))
            {
                throw new Exception("Can´t create LinRegr trainer. Network structure is not complient (single layer having Identity activation).");
            }
            //Check samples conditions
            if (inputVectorCollection.Count < inputVectorCollection[0].Length + 1)
            {
                throw new Exception("Can´t create LinRegr trainer. Insufficient number of training samples. Minimum is " + (inputVectorCollection[0].Length + 1).ToString() + ".");
            }
            //Parameters
            _settings = settings;
            if (_settings == null)
            {
                //Default parameters
                _settings = new LinRegrTrainerSettings();
            }
            _net = net;
            _inputVectorCollection           = inputVectorCollection;
            _outputVectorCollection          = outputVectorCollection;
            _outputSingleColMatrixCollection = new List <Matrix>(_net.NumOfOutputValues);
            for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
            {
                Matrix outputSingleColMatrix = new Matrix(_outputVectorCollection.Count, 1);
                for (int row = 0; row < _outputVectorCollection.Count; row++)
                {
                    //Output
                    outputSingleColMatrix.Data[row][0] = _outputVectorCollection[row][outputIdx];
                }
                _outputSingleColMatrixCollection.Add(outputSingleColMatrix);
            }
            _rand     = rand;
            _maxEpoch = maxEpoch;
            _epoch    = 0;
            _alphas   = new double[_maxEpoch];
            //Plan the iterations alphas
            double coeff = (maxEpoch > 1) ? _settings.MaxStretch / (maxEpoch - 1) : 0;

            for (int i = 0; i < _maxEpoch; i++)
            {
                _alphas[i] = _settings.HiNoiseIntensity - _settings.HiNoiseIntensity * Math.Tanh(i * coeff);
                _alphas[i] = Math.Max(0, _alphas[i]);
            }
            //Ensure the last alpha is zero
            _alphas[_maxEpoch - 1] = 0;
            return;
        }
示例#2
0
        //Constructor
        /// <summary>
        /// Instantiates the RPropTrainer
        /// </summary>
        /// <param name="net">
        /// The feed forward network to be trained
        /// </param>
        /// <param name="inputVectorCollection">
        /// Collection of the training input vectors
        /// </param>
        /// <param name="outputVectorCollection">
        /// Collection of the desired outputs
        /// </param>
        /// Trainer parameters
        /// <param name="settings">
        /// </param>
        public RPropTrainer(FeedForwardNetwork net,
                            List <double[]> inputVectorCollection,
                            List <double[]> outputVectorCollection,
                            RPropTrainerSettings settings = null
                            )
        {
            if (!net.Finalized)
            {
                throw new Exception("Can´t create trainer. Network structure was not finalized.");
            }
            _settings = settings;
            if (_settings == null)
            {
                //Default parameters
                _settings = new RPropTrainerSettings();
            }
            _net = net;
            _inputVectorCollection  = inputVectorCollection;
            _outputVectorCollection = outputVectorCollection;
            _weigthsGradsAcc        = new double[_net.NumOfWeights];
            _weigthsGradsAcc.Populate(0);
            _weigthsPrevGradsAcc = new double[_net.NumOfWeights];
            _weigthsPrevGradsAcc.Populate(0);
            _weigthsPrevDeltas = new double[_net.NumOfWeights];
            _weigthsPrevDeltas.Populate(_settings.IniDelta);
            _weigthsPrevChanges = new double[_net.NumOfWeights];
            _weigthsPrevChanges.Populate(0);
            _prevMSE = 0;
            _lastMSE = 0;
            _epoch   = 0;
            //Parallel gradient workers / batch ranges preparation
            _workerRangeCollection = new List <WorkerRange>();
            int numOfWorkers = Math.Min(Environment.ProcessorCount, _inputVectorCollection.Count);

            numOfWorkers = Math.Max(1, numOfWorkers);
            int workerBatchSize = _inputVectorCollection.Count / numOfWorkers;

            for (int workerIdx = 0, fromRow = 0; workerIdx < numOfWorkers; workerIdx++, fromRow += workerBatchSize)
            {
                WorkerRange workerRange = new WorkerRange();
                workerRange.FromRow = fromRow;
                if (workerIdx == numOfWorkers - 1)
                {
                    workerRange.ToRow = _inputVectorCollection.Count - 1;
                }
                else
                {
                    workerRange.ToRow = (fromRow + workerBatchSize) - 1;
                }
                _workerRangeCollection.Add(workerRange);
            }
            return;
        }
示例#3
0
        /// <summary>
        /// Creates a deep copy of this network
        /// </summary>
        public INonRecurrentNetwork DeepClone()
        {
            FeedForwardNetwork clone = new FeedForwardNetwork(NumOfInputValues, NumOfOutputValues);

            clone._numOfNeurons = _numOfNeurons;
            foreach (Layer layer in LayerCollection)
            {
                clone.LayerCollection.Add(layer.DeepClone());
            }
            clone._flatWeights = (double[])_flatWeights.Clone();
            return(clone);
        }
示例#4
0
        /// <summary>
        /// Creates a deep copy of this network
        /// </summary>
        public INonRecurrentNetwork DeepClone()
        {
            FeedForwardNetwork clone = new FeedForwardNetwork(NumOfInputValues, NumOfOutputValues);

            clone.NumOfNeurons = NumOfNeurons;
            foreach (Layer layer in LayerCollection)
            {
                clone.LayerCollection.Add(layer.DeepClone());
            }
            clone._flatWeights = (double[])_flatWeights.Clone();
            clone._isAllowedNguyenWidrowRandomization = _isAllowedNguyenWidrowRandomization;
            return(clone);
        }
示例#5
0
        //Constructor
        /// <summary>
        /// Instantiates the RPropTrainer
        /// </summary>
        /// <param name="net">
        /// The feed forward network to be trained
        /// </param>
        /// <param name="inputVectorCollection">
        /// Collection of the training input vectors
        /// </param>
        /// <param name="outputVectorCollection">
        /// Collection of the desired outputs
        /// </param>
        /// Trainer parameters
        /// <param name="settings">
        /// </param>
        public RPropTrainer(FeedForwardNetwork net,
                            List <double[]> inputVectorCollection,
                            List <double[]> outputVectorCollection,
                            RPropTrainerSettings settings = null
                            )
        {
            if (!net.Finalized)
            {
                throw new Exception("Can´t create trainer. Network structure was not finalized.");
            }
            _settings = settings;
            if (_settings == null)
            {
                //Default parameters
                _settings = new RPropTrainerSettings();
            }
            _net = net;
            _inputVectorCollection  = inputVectorCollection;
            _outputVectorCollection = outputVectorCollection;
            _weigthsGradsAcc        = new double[_net.NumOfWeights];
            _weigthsGradsAcc.Populate(0);
            _weigthsPrevGradsAcc = new double[_net.NumOfWeights];
            _weigthsPrevGradsAcc.Populate(0);
            _weigthsPrevDeltas = new double[_net.NumOfWeights];
            _weigthsPrevDeltas.Populate(_settings.IniDelta);
            _weigthsPrevChanges = new double[_net.NumOfWeights];
            _weigthsPrevChanges.Populate(0);
            _prevMSE = 0;
            MSE      = 0;
            Epoch    = 0;
            //Parallel gradient workers (batch ranges) preparation
            int numOfWorkers = Math.Max(1, Math.Min(Environment.ProcessorCount - 1, _inputVectorCollection.Count));

            _gradientWorkerDataCollection = new GradientWorkerData[numOfWorkers];
            int workerBatchSize = _inputVectorCollection.Count / numOfWorkers;

            for (int workerIdx = 0, fromRow = 0; workerIdx < numOfWorkers; workerIdx++, fromRow += workerBatchSize)
            {
                GradientWorkerData gwd = new GradientWorkerData
                                         (
                    fromRow: fromRow,
                    toRow: (workerIdx == numOfWorkers - 1 ? _inputVectorCollection.Count - 1 : (fromRow + workerBatchSize) - 1),
                    numOfWeights: _net.NumOfWeights
                                         );
                _gradientWorkerDataCollection[workerIdx] = gwd;
            }
            return;
        }
示例#6
0
 //Constructor
 /// <summary>
 /// Constructs an initialized instance
 /// </summary>
 /// <param name="net">FF network to be trained</param>
 /// <param name="inputVectorCollection">Predictors (input)</param>
 /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param>
 /// <param name="rand">Random object to be used for adding a white-noise to predictors</param>
 /// <param name="settings">Startup parameters of the trainer</param>
 public QRDRegrTrainer(FeedForwardNetwork net,
                       List <double[]> inputVectorCollection,
                       List <double[]> outputVectorCollection,
                       QRDRegrTrainerSettings settings,
                       Random rand
                       )
 {
     //Check network readyness
     if (!net.Finalized)
     {
         throw new Exception("Can´t create trainer. Network structure was not finalized.");
     }
     //Check network conditions
     if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity))
     {
         throw new Exception("Can´t create trainer. Network structure is not complient (single layer having Identity activation).");
     }
     //Check samples conditions
     if (inputVectorCollection.Count < inputVectorCollection[0].Length + 1)
     {
         throw new Exception($"Can´t create trainer. Insufficient number of training samples {inputVectorCollection.Count}. Minimum is {(inputVectorCollection[0].Length + 1)}.");
     }
     //Parameters
     _settings                        = settings;
     MaxAttempt                       = _settings.NumOfAttempts;
     MaxAttemptEpoch                  = _settings.NumOfAttemptEpochs;
     _net                             = net;
     _rand                            = rand;
     _inputVectorCollection           = inputVectorCollection;
     _outputVectorCollection          = outputVectorCollection;
     _outputSingleColMatrixCollection = new List <Matrix>(_net.NumOfOutputValues);
     for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
     {
         Matrix outputSingleColMatrix = new Matrix(_outputVectorCollection.Count, 1);
         for (int row = 0; row < _outputVectorCollection.Count; row++)
         {
             //Output
             outputSingleColMatrix.Data[row][0] = _outputVectorCollection[row][outputIdx];
         }
         _outputSingleColMatrixCollection.Add(outputSingleColMatrix);
     }
     //Start training attempt
     Attempt = 0;
     NextAttempt();
     return;
 }
示例#7
0
        //Constructor
        /// <summary>
        /// Instantiates the RPropTrainer
        /// </summary>
        /// <param name="net"> The feed forward network to be trained </param>
        /// <param name="inputVectorCollection"> Collection of the training input vectors </param>
        /// <param name="outputVectorCollection"> Collection of the desired outputs </param>
        /// <param name="settings"> Trainer parameters </param>
        /// <param name="rand">Random object to be used</param>
        public RPropTrainer(FeedForwardNetwork net,
                            List <double[]> inputVectorCollection,
                            List <double[]> outputVectorCollection,
                            RPropTrainerSettings settings,
                            Random rand
                            )
        {
            if (!net.Finalized)
            {
                throw new Exception("Can´t create trainer. Network structure was not finalized.");
            }
            _settings               = settings;
            MaxAttempt              = _settings.NumOfAttempts;
            MaxAttemptEpoch         = _settings.NumOfAttemptEpochs;
            _net                    = net;
            _rand                   = rand;
            _inputVectorCollection  = inputVectorCollection;
            _outputVectorCollection = outputVectorCollection;
            _weigthsGradsAcc        = new double[_net.NumOfWeights];
            _weigthsPrevGradsAcc    = new double[_net.NumOfWeights];
            _weigthsPrevDeltas      = new double[_net.NumOfWeights];
            _weigthsPrevChanges     = new double[_net.NumOfWeights];
            //Parallel gradient workers (batch ranges) preparation
            int numOfWorkers = Math.Max(1, Math.Min(Environment.ProcessorCount - 1, _inputVectorCollection.Count));

            _gradientWorkerDataCollection = new GradientWorkerData[numOfWorkers];
            int workerBatchSize = _inputVectorCollection.Count / numOfWorkers;

            for (int workerIdx = 0, fromRow = 0; workerIdx < numOfWorkers; workerIdx++, fromRow += workerBatchSize)
            {
                GradientWorkerData gwd = new GradientWorkerData
                                         (
                    fromRow: fromRow,
                    toRow: (workerIdx == numOfWorkers - 1 ? _inputVectorCollection.Count - 1 : (fromRow + workerBatchSize) - 1),
                    numOfWeights: _net.NumOfWeights
                                         );
                _gradientWorkerDataCollection[workerIdx] = gwd;
            }
            InfoMessage = string.Empty;
            //Start training attempt
            Attempt = 0;
            NextAttempt();
            return;
        }
示例#8
0
        //Constructor
        /// <summary>
        /// Constructs an initialized instance
        /// </summary>
        /// <param name="net">FF network to be trained</param>
        /// <param name="inputVectorCollection">Predictors (input)</param>
        /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param>
        /// <param name="settings">Startup parameters of the trainer</param>
        public ElasticRegrTrainer(FeedForwardNetwork net,
                                  List <double[]> inputVectorCollection,
                                  List <double[]> outputVectorCollection,
                                  ElasticRegrTrainerSettings settings
                                  )
        {
            //Check network readyness
            if (!net.Finalized)
            {
                throw new Exception("Can´t create trainer. Network structure was not finalized.");
            }
            //Check network conditions
            if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity))
            {
                throw new Exception("Can´t create trainer. Network structure is not complient (single layer having Identity activation).");
            }
            //Check samples conditions
            if (inputVectorCollection.Count == 0)
            {
                throw new Exception("Can´t create trainer. Missing training samples.");
            }
            //Collections
            _inputVectorCollection  = new List <double[]>(inputVectorCollection);
            _outputVectorCollection = new List <double[]>(outputVectorCollection);
            var rangePartitioner = Partitioner.Create(0, _inputVectorCollection.Count);

            _parallelRanges = new List <Tuple <int, int> >(rangePartitioner.GetDynamicPartitions());
            //Parameters
            _settings       = settings;
            MaxAttempt      = _settings.NumOfAttempts;
            MaxAttemptEpoch = _settings.NumOfAttemptEpochs;
            Attempt         = 1;
            AttemptEpoch    = 0;
            _net            = net;
            _gamma          = _settings.Lambda * _settings.Alpha;
            return;
        }
示例#9
0
        //Constructor
        /// <summary>
        /// Constructs an initialized instance
        /// </summary>
        /// <param name="net">FF network to be trained</param>
        /// <param name="inputVectorCollection">Predictors (input)</param>
        /// <param name="outputVectorCollection">Ideal outputs (the same number of rows as number of inputs)</param>
        /// <param name="settings">Optional startup parameters of the trainer</param>
        /// <param name="rand">Random object to be used</param>
        public RidgeRegrTrainer(FeedForwardNetwork net,
                                List <double[]> inputVectorCollection,
                                List <double[]> outputVectorCollection,
                                RidgeRegrTrainerSettings settings,
                                Random rand
                                )
        {
            //Check network readyness
            if (!net.Finalized)
            {
                throw new Exception("Can´t create trainer. Network structure was not finalized.");
            }
            //Check network conditions
            if (net.LayerCollection.Count != 1 || !(net.LayerCollection[0].Activation is Identity))
            {
                throw new Exception("Can´t create trainer. Network structure is not complient (single layer having Identity activation).");
            }
            //Check samples conditions
            if (inputVectorCollection.Count == 0)
            {
                throw new Exception("Can´t create trainer. Missing training samples.");
            }
            //Collections
            _inputVectorCollection  = new List <double[]>(inputVectorCollection);
            _outputVectorCollection = new List <double[]>(outputVectorCollection);
            //Parameters
            _settings       = settings;
            MaxAttempt      = _settings.NumOfAttempts;
            MaxAttemptEpoch = _settings.NumOfAttemptEpochs;
            Attempt         = 1;
            AttemptEpoch    = 0;
            _net            = net;
            _rand           = rand;
            _outputSingleColVectorCollection = new List <Vector>(_net.NumOfOutputValues);
            for (int outputIdx = 0; outputIdx < _net.NumOfOutputValues; outputIdx++)
            {
                Vector outputSingleColVector = new Vector(outputVectorCollection.Count);
                for (int row = 0; row < outputVectorCollection.Count; row++)
                {
                    //Output
                    outputSingleColVector.Data[row] = outputVectorCollection[row][outputIdx];
                }
                _outputSingleColVectorCollection.Add(outputSingleColVector);
            }
            //Lambda seeker
            _lambdaSeeker = new ParamSeeker(_settings.LambdaSeekerCfg);
            _currLambda   = 1e6;
            //Matrix setup
            Matrix predictorsMatrix = new Matrix(inputVectorCollection.Count, _net.NumOfInputValues + 1);

            for (int row = 0; row < inputVectorCollection.Count; row++)
            {
                //Predictors
                for (int col = 0; col < _net.NumOfInputValues; col++)
                {
                    predictorsMatrix.Data[row][col] = inputVectorCollection[row][col];
                }
                //Add constant bias to predictors
                predictorsMatrix.Data[row][_net.NumOfInputValues] = 1;
            }
            _transposedPredictorsMatrix = predictorsMatrix.Transpose();
            _baseSquareMatrix           = _transposedPredictorsMatrix * predictorsMatrix;
            return;
        }