//Methods /// <summary> /// Adds new value to stored time series /// </summary> /// <param name="nextValue">Next time series value</param> public void AddNextValue(double nextValue) { //Affect next value to existing averages Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx => { int intervalLength = _subIntervalLengthCollection[_subIntervalIdx]; RescalledRange intervalRescalledRange = new RescalledRange(intervalLength); for (int valueIdx = (_valueCollection.Count - intervalLength) + 1; valueIdx < _valueCollection.Count; valueIdx++) { intervalRescalledRange.AddValue(_valueCollection[valueIdx]); } intervalRescalledRange.AddValue(nextValue); _avgCollection[_subIntervalIdx].AddSampleValue(intervalRescalledRange.Compute()); }); //Add new value _valueCollection.Add(nextValue); _subIntervalLengthCollection.Add(_valueCollection.Count); _avgCollection.Add(new WeightedAvg()); RescalledRange fullRescalledRange = new RescalledRange(_valueCollection.Count); foreach (double value in _valueCollection) { fullRescalledRange.AddValue(value); } _avgCollection[_avgCollection.Count - 1].AddSampleValue(fullRescalledRange.Compute()); return; }
/// <summary> /// Computes Hurst exponent estimation for next hypothetical value in time series. /// Function does not change the instance, it is a simulation only. /// </summary> /// <returns>Resulting linear fit object</returns> public LinearFit ComputeNext(double simValue) { //Affect new value to existing averages double[] avgValues = new double[_avgCollection.Count]; Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx => { int intervalLength = _subIntervalLengthCollection[_subIntervalIdx]; RescalledRange intervalRescalledRange = new RescalledRange(intervalLength); for (int valueIdx = (_valueCollection.Count - intervalLength) + 1; valueIdx < _valueCollection.Count; valueIdx++) { intervalRescalledRange.AddValue(_valueCollection[valueIdx]); } intervalRescalledRange.AddValue(simValue); avgValues[_subIntervalIdx] = _avgCollection[_subIntervalIdx].SimulateNext(intervalRescalledRange.Compute()); }); //Add updated existing points LinearFit linFit = new LinearFit(); for (int i = 0; i < _avgCollection.Count; i++) { double x = Math.Log(_subIntervalLengthCollection[i]); double avg = avgValues[i]; double y = 0; if (avg != 0) { y = Math.Log(avg); } linFit.AddSamplePoint(x, y); } //Return return(linFit); }
/// <summary> /// Creates an initialized instance /// </summary> /// <param name="timeSeries">Time series data</param> public HurstExpEstim(IEnumerable <double> timeSeries) { _valueCollection = timeSeries.ToList(); //Check time series length if (_valueCollection.Count < MinSubIntervalLength + 1) { throw new ArgumentException($"Time series is too short. Minimal length is {MinSubIntervalLength + 1}", "timeSeries"); } //Subintervals _subIntervalLengthCollection = new List <int>((_valueCollection.Count - MinSubIntervalLength) + 1); for (int i = 0, length = MinSubIntervalLength; length <= _valueCollection.Count; i++, length++) { _subIntervalLengthCollection.Add(length); } _avgCollection = new List <WeightedAvg>(_subIntervalLengthCollection.Count); for (int i = 0; i < _subIntervalLengthCollection.Count; i++) { _avgCollection.Add(new WeightedAvg()); } Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx => { int intervalLength = _subIntervalLengthCollection[_subIntervalIdx]; RescalledRange rescalledRange = new RescalledRange(intervalLength); for (int startIdx = 0; startIdx <= _valueCollection.Count - intervalLength; startIdx++) { rescalledRange.Reset(); for (int valueSubIdx = 0, timeSeriesIdx = startIdx; valueSubIdx < intervalLength; valueSubIdx++, timeSeriesIdx++) { rescalledRange.AddValue(_valueCollection[timeSeriesIdx]); } _avgCollection[_subIntervalIdx].AddSampleValue(rescalledRange.Compute()); } }); return; }