/// <summary></summary> /// <param name="inputDim">dimension of the input vectors</param> /// <param name="hiddenDim">dimension of the hidden layer</param> /// <param name="outputDim">dimension of the output vector</param> /// <param name="scale">scaling factor to initialize weights</param> public GRU(int inputDim, int hiddenDim, int outputDim, float scale = 0.2f) { // initial hidden state h0 = T.Shared(NN.Zeros <float>(hiddenDim), "h0"); // reset gate layers Wr = T.Shared(NN.Random.Uniform(-scale, scale, inputDim, hiddenDim), "Wr"); Ur = T.Shared(NN.Eye <float>(hiddenDim), "Ur"); br = T.Shared(NN.Zeros <float>(/*1,*/ hiddenDim), "br"); // update gate layers Wz = T.Shared(NN.Random.Uniform(-scale, scale, inputDim, hiddenDim), "Wz"); Uz = T.Shared(NN.Eye <float>(hiddenDim), "Uz"); bz = T.Shared(NN.Zeros <float>(/*1,*/ hiddenDim), "bz"); // layers W = T.Shared(NN.Random.Uniform(-scale, scale, inputDim, hiddenDim), "W"); U = T.Shared(NN.Eye <float>(hiddenDim), "U"); b = T.Shared(NN.Zeros <float>(/*1,*/ hiddenDim), "b"); // prediction layer S = T.Shared(NN.Random.Uniform(-scale, scale, hiddenDim, outputDim), "S"); Sb = T.Shared(NN.Zeros <float>(/*1,*/ outputDim), "Sb"); // bundle this.@params = new[] { h0, Wr, Ur, br, Wz, Uz, bz, W, U, b, S, Sb }; // Adagrad shared variables this.grads = new Dictionary <string, Tensor <float> .Shared>(); foreach (var param in @params) { var name = param.Name + "Grad"; this.grads[name] = T.Shared(NN.Zeros <float>(param.Value.Shape), name); } this.hists = new Dictionary <string, Tensor <float> .Shared>(); foreach (var param in @params) { var name = param.Name + "Hist"; this.hists[name] = T.Shared(NN.Zeros <float>(param.Value.Shape), name); } // Adadelta shared variables var hists2 = new Dictionary <string, Tensor <float> .Shared>(); foreach (var param in @params) { var name = param.Name + "Hist2"; hists2[name] = T.Shared(NN.Zeros <float>(param.Value.Shape), name); } var x = T.Matrix <float>("x"); // [sentence, inputDim] var expected = T.Vector <float>("expected"); Func <Tensor <float>, Tensor <float>, Tensor <float>[]> recurrence = (x_t, h_tm1) => { // reset gate var r_t = T.Sigmoid(T.Dot(x_t, Wr) + T.Dot(h_tm1, Ur) + br); // update gate var z_t = T.Sigmoid(T.Dot(x_t, Wz) + T.Dot(h_tm1, Uz) + bz); // proposed hidden state var _h_t = T.Tanh(T.Dot(x_t, W) + T.Dot(r_t * h_tm1, U) + b); // actual hidden state var h_t = z_t * h_tm1 + (1 - z_t) * _h_t; // return all the intermediate variables because they may be reused by T.Grad to optimize gradient computation return(new[] { h_t, r_t, z_t, _h_t }); }; var h = T.Scan(recurrence, x, new[] { h0, null, null, null })[0][-1]; // cost and gradients var output = T.Dot(h, S) + Sb; var error = 0.5f * T.Norm2(output - expected); var gradients = T.Grad(error); var updatesTrain = new OrderedDictionary(); foreach (var param in @params) { var grad = gradients[param]; //var grad = T.Clip(update.Item2, -10, 10); // Adagrad //const float eps = 1e-5f; var g = grads[param.Name + "Grad"]; updatesTrain[g] = g + grad; //updates[param] = param - lr * grad / T.Sqrt(hist + eps); // Adadelta //const float rho = 0.95f; //const float eps = 1e-5f; //var hist = hists[param.Name + "Hist"]; //var hist2 = hists2[param.Name + "Hist2"]; //var newHist = rho * hist + (1 - rho) * (grad * grad); //updates[hist] = newHist; //var newGrad = grad * T.Sqrt((hist2 + eps) / (newHist + eps)); //updates[param] = param - newGrad; //updates[hist2] = rho * hist2 + (1 - rho) * (newGrad * newGrad); // Regular //updates[param] = param - lr * grad; } var batchSize = T.Scalar <float>("batchSize"); var lr = T.Scalar <float>("lr"); const float eps = 1e-5f; var updates = new OrderedDictionary(); foreach (var param in this.@params) { var grad = this.grads[param.Name + "Grad"]; var meanGrad = grad / batchSize; var hist = this.hists[param.Name + "Hist"]; updates[hist] = hist + meanGrad * meanGrad; updates[param] = param - lr * meanGrad / T.Sqrt(hist + eps); updates[grad] = T.ZerosLike(grad); } // theano functions this.Classify = T.Function(input: x, output: output); this.Train = T.Function(input: (x, expected), output: error, updates: updatesTrain); this.Update = T.Function(input: (lr, batchSize), updates: updates); }