示例#1
0
        public override double CalculateDocumentLogProbability(Corpus testCorpus)
        {
            double corpusLogP = 0.0;

            // Sentence probability = multiplication of all words probabilities
            foreach (var sentence in testCorpus.AllTokenizedSentences)
            {
                // Initialize x_{-1}, x_{-2} to START
                var u = "<s>";
                var v = "<s>";

                double logPs = 0.0;

                foreach (var w in sentence)
                {
                    double qWuv = ComputeWordProbability(u, v, w);

                    // Add to sentence probability
                    logPs += Math.Log2(qWuv);

                    // Replace previous tokens
                    u = v;
                    v = w;
                }

                corpusLogP += logPs;
            }

            return(corpusLogP);
        }
示例#2
0
 public override void TrainLanguageModel(Corpus trainingCorpus)
 {
     // Since we interpolate all three q's for every n-gram, preparing this model means preparing all the base n-gram models
     this.UnigramLM.TrainLanguageModel(trainingCorpus);
     this.BigramLM.TrainLanguageModel(trainingCorpus);
     this.TrigramLM.TrainLanguageModel(trainingCorpus);
 }
示例#3
0
        public static void AddStopTokens(Corpus corpus)
        {
            foreach (var line in corpus.AllTokenizedSentences)
            {
                line.Add("</s>");
            }
            ;

            corpus.ComputeTotalWordsCount();
        }
示例#4
0
 public static void UnkCorpus(Corpus corpus, HashSet <string> validVocabulary)
 {
     foreach (var line in corpus.AllTokenizedSentences)
     {
         for (var i = 0; i < line.Count; i++)
         {
             if (!validVocabulary.Contains(line[i]))
             {
                 line[i] = "<unk>";
             }
         }
     }
     ;
 }
示例#5
0
        public static HashSet <string> GetValidVocabulary(Corpus corpus, double unkRatio)
        {
            // Implement a naive unk strategy: unk top n% of lowest count words
            // TODO parametize the strategy

            // Order by word count, then alphabetically to ensure determinism TODO I may want to randomize
            var uniqueSortedTokens = corpus.AllTokenizedSentences.SelectMany(s => s).GroupBy(w => w).OrderByDescending(g => g.Count()).ThenBy(g => g.Key);

            // Remove n% of words
            var ratioToKeep = 1.0 - unkRatio;
            var wordsToKeep = (int)Math.Floor(uniqueSortedTokens.Count() * ratioToKeep);

            var validVocabulary = uniqueSortedTokens.Take(wordsToKeep).Select(g => g.Key).ToHashSet();

            return(validVocabulary);
        }
示例#6
0
        public override void TrainLanguageModel(Corpus trainingCorpus)
        {
            // We are fine flattening all setences into one big string as every word probability is independent of any previous one, so no risk on wrapping sentences
            // Enumerate once so we don't keep on doing it later on
            var flattenedTokenizedAndProcessedSentences = trainingCorpus.AllTokenizedSentences.SelectMany(s => s).ToList();

            // Add n-gram counts (used in numerator)
            this.NGramCounts = flattenedTokenizedAndProcessedSentences.GroupBy(w => w).ToDictionary(g => new Unigram {
                w = g.Key
            }.GetComparisonKey(), g => g.Count());
            this.UniqueNGramsCount = NGramCounts.Count;

            // Add n-1-gram counts (used in denominator)
            // In the case of unigrams, we care about total token counts, including STOP tokens
            this.NGramCounts[new Unigram {
                                 w = string.Empty
                             }.GetComparisonKey()] = trainingCorpus.TotalWordsCount;
        }
示例#7
0
        public override void TrainLanguageModel(Corpus trainingCorpus)
        {
            // We need to process sentece by sentence to avoid wrapping sentences, ie. counting (STOP, v, w) trigrams
            foreach (var sentence in trainingCorpus.AllTokenizedSentences)
            {
                // Initialize x_{-1}, x_{-2} to START
                var u = "<s>";
                var v = "<s>";

                // We now need to store all counts of c(u, v, w) and c(v, w)
                foreach (var w in sentence)
                {
                    Bigram uvBigram = new Bigram {
                        v = u, w = v
                    };
                    Trigram uvwTrigram = new Trigram {
                        u = u, v = v, w = w
                    };

                    // +1 to current count, current will be 0 if not found, thus starting at 1 as expected
                    this.NGramCounts.TryGetValue(uvBigram.GetComparisonKey(), out int uvCount);
                    uvCount++;
                    this.NGramCounts[uvBigram.GetComparisonKey()] = uvCount;

                    var isNewNgram = !this.NGramCounts.TryGetValue(uvwTrigram.GetComparisonKey(), out int uvwCount);
                    uvwCount++;
                    this.NGramCounts[uvwTrigram.GetComparisonKey()] = uvwCount;

                    if (isNewNgram)
                    {
                        this.UniqueNGramsCount++;
                    }

                    // Replace previous tokens
                    u = v;
                    v = w;
                }
            }
        }
示例#8
0
        public override double CalculateDocumentLogProbability(Corpus testCorpus)
        {
            double corpusLogP = 0.0;

            // Sentence probability = multiplication of all words probabilities
            foreach (var sentence in testCorpus.AllTokenizedSentences)
            {
                double logPs = 0.0;

                foreach (var w in sentence)
                {
                    double qW = ComputeWordProbability(string.Empty, string.Empty, w);

                    // Add to sentence probability
                    logPs += Math.Log2(qW);
                }

                corpusLogP += logPs;
            }

            return(corpusLogP);
        }
示例#9
0
        private static void TrainAllLanguageModels(LanguageModelHyperparameters hyperparameters, string crossValIterationPath, Corpus preProcessedCollectionCorpus)
        {
            var stopwatch = new Stopwatch();

            var i = 1;

            foreach (var categoryLanguageModel in hyperparameters.CategoryNGramLanguageModelsMap.Append(new KeyValuePair <string, INGramLanguageModel>("ALLCATEGORIES", hyperparameters.CollectionLevelLanguageModel)))
            {
                var category      = categoryLanguageModel.Key;
                var languageModel = categoryLanguageModel.Value;

                stopwatch.Restart();

                Corpus preProcessedCategoryTrainingCorpus;
                if (category.Equals("ALLCATEGORIES"))
                {
                    preProcessedCategoryTrainingCorpus = preProcessedCollectionCorpus;
                }
                else
                {
                    preProcessedCategoryTrainingCorpus = new Corpus();
                    preProcessedCategoryTrainingCorpus.InitializeAndPreprocessCategoryCorpus(Path.Combine(crossValIterationPath, "training"), category, hyperparameters);
                }

                TextProcessingUtilities.UnkCorpus(preProcessedCategoryTrainingCorpus, Corpus.ValidVocabulary);
                TextProcessingUtilities.AddStopTokens(preProcessedCategoryTrainingCorpus);

                languageModel.TrainLanguageModel(preProcessedCategoryTrainingCorpus);

                stopwatch.Stop();
                //Console.WriteLine($@"LanguageModel for category {category} trained in {stopwatch.ElapsedMilliseconds} ms. {i}/{hyperparameters.CategoryNGramLanguageModelsMap.Count} done");

                i++;
            }
        }
示例#10
0
        static void Main(string[] args)
        {
            var appConfigName = "app.config";

            try
            {
                if (!File.Exists(Path.Combine(args[0], appConfigName)))
                {
                    Console.WriteLine($"{appConfigName} not found in {args[0]}");
                }
            }
            catch (Exception)
            {
                Console.WriteLine($"{appConfigName} not found in {args[0]}");
            }

            var configPath = args[0];
            var allRuns    = File.ReadAllLines(Path.Combine(configPath, appConfigName)).Where(s => !string.IsNullOrWhiteSpace(s) && !s.StartsWith("##"));

            string dataset = args.Length > 1 && args[1].ToLower().Equals("-usesongs") ? "songs" : "reuters";
            string datasetCrossValRootPath = Path.Combine(configPath, @$ "Dataset/{dataset}/CrossVal/");

            int crossValidationValue = new DirectoryInfo(datasetCrossValRootPath).GetDirectories().Length;

            for (int i = 0; i < crossValidationValue; i++)
            {
                Console.WriteLine($@"Cross validation iteration {i + 1}");
                var allHyperparameters    = allRuns.Select(r => LanguageModelHyperparameters.GenerateFromArguments(r));
                var crossValIterationPath = Path.Combine(datasetCrossValRootPath, @$ "{i + 1}");

                // Our corpus existing classification is independent of training
                Corpus.InitializeAndFillCategoriesMap(crossValIterationPath);
                NaiveBayesClassifier.InitializeAndFillCategoryTrainingCounts(Corpus.CategoriesMap);

                // Delete previous predictions files
                var dir = new DirectoryInfo(crossValIterationPath);

                foreach (var file in dir.EnumerateFiles("predictions*"))
                {
                    file.Delete();
                }

                var runId = 1;
                foreach (var hyperparameters in allHyperparameters)
                {
                    var globalStopwatch = new Stopwatch();
                    globalStopwatch.Start();

                    // We do this here as volcabulary can change depending on hyperparams
                    //Console.WriteLine($@"Parsing all training documents to get valid vocabulary and train collection level unigram model (used by some smoothing techniques)...");
                    var allCategoriesTrainingCorpus = new Corpus();
                    allCategoriesTrainingCorpus.InitializeAndPreprocessCategoryCorpus(Path.Combine(crossValIterationPath, "training"), "ALLCATEGORIES", hyperparameters);
                    Corpus.InitializeAndFillValidVocabulary(allCategoriesTrainingCorpus, hyperparameters);
                    //Console.WriteLine($@"Generated valid vocabulary. Elapsed time: {globalStopwatch.ElapsedMilliseconds}");

                    TrainAllLanguageModels(hyperparameters, crossValIterationPath, allCategoriesTrainingCorpus);

                    //Console.WriteLine();
                    //Console.WriteLine($@"Training done in {globalStopwatch.ElapsedMilliseconds} ms");

                    //Console.WriteLine();
                    //Console.WriteLine($@"Classifying documents");
                    var allPredictions = ClassifyAllTestDocuments(hyperparameters, crossValIterationPath);
                    File.WriteAllLines(Path.Combine(crossValIterationPath, @$ "predictions{runId}"), allPredictions);
                    //Console.WriteLine($@"Elapsed time: {globalStopwatch.ElapsedMilliseconds} ms");

                    runId++;
                }
            }
        }
示例#11
0
 public abstract double CalculateDocumentLogProbability(Corpus corpus);
示例#12
0
 public abstract void TrainLanguageModel(Corpus corpus);