示例#1
0
        static void crossValidation()
        {
            //load data
            Console.WriteLine("reading cross validation data...");
            Global.swLog.WriteLine("reading cross validation data...");
            List <dataSet> XList  = new List <dataSet>();
            List <dataSet> XXList = new List <dataSet>();

            loadDataForCV(XList, XXList);

            //start cross validation
            foreach (double r in Global.regList)//do CV for each different regularizer r (sigma)
            {
                Global.swLog.WriteLine("\ncross validation. r={0}", r);
                Console.WriteLine("\ncross validation. r={0}", r);
                if (Global.rawResWrite)
                {
                    Global.swResRaw.WriteLine("% cross validation. r={0}", r);
                }
                for (int i = 0; i < Global.nCV; i++)
                {
                    Global.swLog.WriteLine("\n#validation={0}", i + 1);
                    Console.WriteLine("\n#validation={0}", i + 1);
                    if (Global.rawResWrite)
                    {
                        Global.swResRaw.WriteLine("% #validation={0}", i + 1);
                    }
                    Global.reg = r;
                    dataSet Xi = XList[i];
                    if (Global.runMode.Contains("rich"))
                    {
                        toolboxRich tb = new toolboxRich(Xi);
                        basicTrain(XXList[i], tb);
                    }
                    else
                    {
                        toolbox tb = new toolbox(Xi);
                        basicTrain(XXList[i], tb);
                    }

                    resSummarize.write();
                    if (Global.rawResWrite)
                    {
                        Global.swResRaw.WriteLine();
                    }
                }
                if (Global.rawResWrite)
                {
                    Global.swResRaw.WriteLine();
                }
            }
        }
示例#2
0
        public static double test()
        {
            dataSet X  = new dataSet(Global.fFeatureTrain, Global.fGoldTrain);
            dataSet XX = new dataSet(Global.fFeatureTest, Global.fGoldTest);

            Global.swLog.WriteLine("data size (test): {0}", XX.Count);
            //load model for testing
            toolboxRich tb = new toolboxRich(X, false);

            List <double> scoreList = tb.test(XX, 0);

            double score = scoreList[0];

            Global.scoreListList.Add(scoreList);
            resSummarize.write();
            return(score);
        }
示例#3
0
        public static double train()
        {
            //load data
            Console.WriteLine("\nreading training & test data...");
            Global.swLog.WriteLine("\nreading training & test data...");
            dataSet X, XX;

            if (Global.runMode.Contains("tune"))
            {
                dataSet origX = new dataSet(Global.fFeatureTrain, Global.fGoldTrain);
                X  = new dataSet();
                XX = new dataSet();
                MainClass.dataSplit(origX, Global.tuneSplit, X, XX);
            }
            else
            {
                X  = new dataSet(Global.fFeatureTrain, Global.fGoldTrain);
                XX = new dataSet(Global.fFeatureTest, Global.fGoldTest);
                MainClass.dataSizeScale(X);
            }
            Global.swLog.WriteLine("data sizes (train, test): {0} {1}", X.Count, XX.Count);

            double score = 0;

            foreach (double r in Global.regList)
            {
                Global.reg = r;
                Global.swLog.WriteLine("\nr: " + r.ToString());
                Console.WriteLine("\nr: " + r.ToString());
                if (Global.rawResWrite)
                {
                    Global.swResRaw.WriteLine("\n%r: " + r.ToString());
                }
                toolboxRich tb = new toolboxRich(X);
                score = MainClass.basicTrain(XX, tb);
                resSummarize.write();
                //save model
                if (Global.save == 1)
                {
                    tb.Model.save(Global.fModel);
                }
            }
            return(score);
        }