示例#1
0
        public NormalDistributionInfo GetNormalDistributionFitWithNumOfSamePoints(int index)
        {
            PR.SetData(PD.GetDataArr());
            if (PR is INormalDistributionFit)
            {
                return(PR.GetNormalDistributionFitWithNumOfSamePoints(index));
            }
            NormalDistributionInfo n = new NormalDistributionInfo();

            n.mean = -1;
            n.SD   = -1;
            return(n);
        }
示例#2
0
        public NormalDistributionInfo GetPeakNormalDistribution(double peak, int index, int numOfPoints)
        {
            NormalDistributionInfo   Info = new NormalDistributionInfo();
            List <double>            ls   = new List <double>();
            Dictionary <double, int> dict = CalculateTimesEachX(index);

            double[] keyArr = dict.Keys.ToArray();
            int      i      = 0;

            for (i = 0; i < keyArr.Length; i++)
            {
                if (keyArr[i] == peak)
                {
                    break;
                }
            }
            for (int j = i - numOfPoints; j < i; j++)
            {
                if (j < 0)
                {
                    j = 0;
                }
                int value = dict[keyArr[j]];
                for (int k = 0; k < value; k++)
                {
                    ls.Add(keyArr[j]);
                }
            }

            for (int j = i; j < i + numOfPoints + 1; j++)
            {
                if (j >= keyArr.Length)
                {
                    break;
                }
                int value = dict[keyArr[j]];
                for (int k = 0; k < value; k++)
                {
                    ls.Add(keyArr[j]);
                }
            }

            NormalDistribution ND = new NormalDistribution();

            ND.Fit(ls.ToArray());
            Info.mean = ND.Mean;
            Info.SD   = ND.StandardDeviation;
            return(Info);
        }
示例#3
0
        public NormalDistributionInfo GetNormalDistributionFitWithNumOfSamePoints(int index)
        {
            NormalDistributionInfo Info = new NormalDistributionInfo();
            int length = MD.Length;

            double[] arr = new double[length];
            for (int i = 0; i < length; i++)
            {
                arr[i] = MD[i].GetParameters()[index];
            }
            NormalDistribution ND = new NormalDistribution();

            ND.Fit(arr);
            Info.mean = ND.Mean;
            Info.SD   = ND.StandardDeviation;
            return(Info);
        }
示例#4
0
        private void drawButton_Click(object sender, EventArgs e)
        {
            string algorName = algorithmsAndResult.GetCurrentAlgorithm();

            GraphChart.Series["dataPoints"].Points.Clear();
            GraphChart.Series["predictGraph"].Points.Clear();
            GraphChart.Series["NormalFit"].Points.Clear();
            GraphChart.Series["Peaks"].Points.Clear();
            GraphChart.Series["NormalFitPeak1"].Points.Clear();
            GraphChart.Series["NormalFitPeak2"].Points.Clear();
            double numOfData = 0;

            points[] dataPoints = algorithmsAndResult.GetPoints();
            if (dataPoints == null)
            {
                return;
            }

            for (int i = 0; i < dataPoints.Length; i++)
            {
                GraphChart.Series["dataPoints"].Points.AddXY(dataPoints[i].x, dataPoints[i].y);
                numOfData = numOfData + dataPoints[i].y;
            }
            GraphChart.Series["dataPoints"].Color = Color.Red;

            double startX          = dataPoints[0].x;
            double endX            = dataPoints[dataPoints.Length - 1].x;
            int    numOfTestPoints = dataPoints.Length * 10;
            double diff            = (endX - startX) / numOfTestPoints;

            if (algorName == "Normal Distribution Fit")
            {
                NormalDistributionInfo ndi = algorithmsAndResult.GetNDinfo();
                if (ndi.SD != -1 && ndi.mean != -1)
                {
                    // double rate = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((ndi.mean - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                    // rate = ndi.mean / rate;
                    for (int i = 0; i <= numOfTestPoints; i++)
                    {
                        double testX = startX + i * diff;
                        double testY = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((testX - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                        testY = testY * numOfData;
                        GraphChart.Series["NormalFit"].Points.AddXY(testX, testY);
                    }
                    GraphChart.Series["NormalFit"].Color = Color.Green;
                }
            }

            else if (algorName == "Polynomial Fit")
            {
                double[,] paramsResult = algorithmsAndResult.GetEquationParmas();
                if (paramsResult == null)
                {
                    return;
                }

                for (int i = 0; i <= numOfTestPoints; i++)
                {
                    double testX = startX + i * diff;
                    double testY = 0;
                    for (int j = 0; j < paramsResult.GetLength(0); j++)
                    {
                        testY = testY + Math.Pow(testX, j) * paramsResult[j, 0];
                    }
                    GraphChart.Series["predictGraph"].Points.AddXY(testX, testY);
                }
                GraphChart.Series["predictGraph"].Color = Color.Blue;
            }

            else if (algorName == "Peak" || algorName == "Two Peaks")
            {
                points[] pts = algorithmsAndResult.GetPeakPoints();
                foreach (var pt in pts)
                {
                    GraphChart.Series["Peaks"].Points.AddXY(pt.x, pt.y);
                }
                GraphChart.Series["Peaks"].Color = Color.Purple;
            }

            if (algorName == "Two Peaks")
            {
                TwoDictInfo TDinfo = algorithmsAndResult.GetTDinfo();

                NormalDistributionInfo ndi = TDinfo.peak1Info;
                if (TDinfo.peak1value == -1 || TDinfo.peak2value == -1)
                {
                    return;
                }
                double y    = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((TDinfo.peak1value - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                double rate = TDinfo.peak1times / y;
                if (ndi.SD != -1 && ndi.mean != -1)
                {
                    for (int i = 0; i < TDinfo.peak2value; i++)
                    {
                        double testX = i;
                        double testY = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((testX - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                        testY = testY * rate;
                        GraphChart.Series["NormalFitPeak1"].Points.AddXY(testX, testY);
                    }
                    GraphChart.Series["NormalFitPeak1"].Color = Color.Green;
                }

                ndi = TDinfo.peak2Info;

                y    = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((TDinfo.peak2value - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                rate = TDinfo.peak2times / y;
                if (ndi.SD != -1 && ndi.mean != -1)
                {
                    for (int i = (int)TDinfo.peak1value; i < TDinfo.last; i++)
                    {
                        double testX = i;
                        double testY = (1 / (ndi.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((testX - ndi.mean), 2) / (2 * Math.Pow(ndi.SD, 2)));
                        testY = testY * rate;
                        GraphChart.Series["NormalFitPeak2"].Points.AddXY(testX, testY);
                    }
                    GraphChart.Series["NormalFitPeak2"].Color = Color.Red;
                }
            }

            if (algorithmsAndResult.GetCurrentAlgorithm() != "Two Peaks")
            {
                algorithmsAndResult.clear();
            }
        }
示例#5
0
        private void GetResultButton_Click(object sender, EventArgs e)
        {
            Settings.Default["AlgorName"] = label3.Text;
            ResultBox.Items.Clear();
            if (label3.Text == "Statics")
            {
                if (!(PF is Istatics))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                Settings.Default["Parameter"] = textBox1.Text;
                int    numOfParmas = PF.GetData()[0].GetNumOfParams();
                double mean, sd;
                for (int i = 0; i < numOfParmas; i++)
                {
                    mean = PF.GetMean(i);
                    ResultBox.Items.Add("Mean of param " + i + ": " + mean);
                    sd = PF.GetStandardDeviation(i);
                    ResultBox.Items.Add("StandardDeviation of param " + i + ": " + sd);
                    if (textBox1.Text != "")
                    {
                        double number    = Double.Parse(textBox1.Text);
                        double Threshold = PF.GetThreshold(number);
                        ResultBox.Items.Add("Threshold of param " + i + ": " + Threshold);
                        ResultBox.Items.Add("");
                    }
                }
            }
            else if (label3.Text == "Peak")
            {
                if (!(PF is Ipeek))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                if (XaxiscomboBox.Text == "" && YaxiscomboBox.Text == "")
                {
                    return;
                }
                sortData();
                Settings.Default["NumOfPoints"] = numBox.Text;
                Settings.Default["Range"]       = rangeBox.Text;
                if (YaxiscomboBox.Text.Contains("#"))
                {
                    string text        = YaxiscomboBox.Text.Substring(10).Trim();
                    int    num         = Int32.Parse(text);
                    int    numOfpoints = 3;
                    double percentage  = 0.2;
                    if (numBox.Text != "")
                    {
                        numOfpoints = Int32.Parse(numBox.Text);
                    }
                    if (rangeBox.Text != "")
                    {
                        percentage = double.Parse(rangeBox.Text);
                    }
                    dataDict = PF.CalculateTimesEachX(num);
                    List <PeekValleyData> peaks = PF.GetPeaksWithNumOfSamePoints(num, numOfpoints, percentage);
                    peaksData = peaks;

                    /*
                     * for (int i = 0; i < PF.GetData().Length; i++)
                     * {
                     *  ResultBox.Items.Add(PF.GetData()[i].WriteToLine());
                     * }*/
                    if (peaksData.Count() == 0)
                    {
                        ResultBox.Items.Add("No Peak found yet.");
                    }
                    foreach (var item in peaks)
                    {
                        ResultBox.Items.Add("Peak Value: " + item.value + "   Times: " + item.times);
                    }
                }
                else if (YaxiscomboBox.Text != "")
                {
                    string text = YaxiscomboBox.Text.Substring(5).Trim();

                    int Yindex = Int32.Parse(text);
                    // MessageBox.Show(Yindex.ToString());
                    int    numOfpoints = 3;
                    double percentage  = 0.2;
                    if (numBox.Text != "")
                    {
                        numOfpoints = Int32.Parse(numBox.Text);
                    }
                    if (rangeBox.Text != "")
                    {
                        percentage = double.Parse(rangeBox.Text);
                    }
                    text = XaxiscomboBox.Text.Substring(5).Trim();
                    int Xindex;
                    if (XaxiscomboBox.Text.Contains("TimeSpan"))
                    {
                        Xindex = -1;
                    }
                    else
                    {
                        Xindex = Int32.Parse(text);
                    }
                    MyData[] MD = PF.GetData();
                    dataPoints = new points[MD.Count()];
                    for (int i = 0; i < MD.Count(); i++)
                    {
                        dataPoints[i].x = MD[i].GetParameters()[Xindex];
                        dataPoints[i].y = MD[i].GetParameters()[Yindex];
                    }
                    List <PeekValleyData> peaks = PF.GetPeaksWithXY(Yindex, Xindex, numOfpoints, percentage);
                    peaksData = peaks;

                    /*
                     * for (int i = 0; i < PF.GetData().Length; i++)
                     * {
                     *  ResultBox.Items.Add(PF.GetData()[i].WriteToLine());
                     * }
                     * */
                    foreach (var item in peaks)
                    {
                        ResultBox.Items.Add("X: " + item.x + "   Y: " + item.y);
                    }
                }
            }
            else if (label3.Text == "Polynomial Fit")
            {
                if (!(PF is Ipolyfit))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                if (XaxiscomboBox.Text == "" && YaxiscomboBox.Text == "")
                {
                    return;
                }
                sortData();
                int power = 1;
                if (powerBox.Text != "")
                {
                    power = Int32.Parse(powerBox.Text);
                }
                if (YaxiscomboBox.Text.Contains("#"))
                {
                    string text = YaxiscomboBox.Text.Substring(10).Trim();
                    int    num  = Int32.Parse(text);
                    Dictionary <double, int> dict = PF.CalculateTimesEachX(num);
                    dataDict    = dict;
                    double[,] x = new double[dict.Keys.Count(), power];
                    double[] keys = dict.Keys.ToArray();
                    for (int i = 0; i < dict.Keys.Count(); i++)
                    {
                        for (int j = 0; j < power; j++)
                        {
                            x[i, j] = Math.Pow(keys[i], j + 1);
                        }
                    }
                    double[] y = new double[keys.Length];
                    for (int i = 0; i < keys.Length; i++)
                    {
                        y[i] = dict[keys[i]];
                    }
                    double[,] result = PF.GetPolyFit(x, y, power);
                    paramsResult     = result;
                    string r = "y=";
                    r = r + result[0, 0].ToString("#.000");
                    for (int i = 1; i <= power; i++)
                    {
                        r = r + "+ " + result[i, 0].ToString("#.000") + "x^" + i.ToString();
                    }
                    ResultBox.Items.Add(r);
                }
                else if (YaxiscomboBox.Text != "")
                {
                    string text   = YaxiscomboBox.Text.Substring(5).Trim();
                    int    Yindex = Int32.Parse(text);
                    int    Xindex;
                    if (XaxiscomboBox.Text.Contains("TimeSpan"))
                    {
                        MessageBox.Show("We have not support Timespan in this algorithm yet.");
                        return;
                    }
                    else
                    {
                        text   = XaxiscomboBox.Text.Substring(5).Trim();
                        Xindex = Int32.Parse(text);
                    }
                    MyData[] MD = PF.GetData();
                    dataPoints  = new points[MD.Count()];
                    double[,] x = new double[MD.Count(), power];
                    for (int i = 0; i < MD.Count(); i++)
                    {
                        dataPoints[i].x = MD[i].GetParameters()[Xindex];
                        for (int j = 0; j < power; j++)
                        {
                            x[i, j] = Math.Pow(MD[i].GetParameters()[Xindex], j + 1);
                        }
                    }
                    double[] y = new double[MD.Count()];
                    for (int i = 0; i < y.Length; i++)
                    {
                        y[i]            = MD[i].GetParameters()[Yindex];
                        dataPoints[i].y = y[i];
                    }
                    double[,] result = PF.GetPolyFit(x, y, power);
                    paramsResult     = result;
                    string r = "y=";
                    r = r + result[0, 0].ToString("#.000");
                    for (int i = 1; i <= power; i++)
                    {
                        r = r + "+ " + result[i, 0].ToString("#.000") + "x^" + i.ToString();
                    }
                    ResultBox.Items.Add(r);
                }
                if (xvalueBox.Text != "")
                {
                    double x = Convert.ToDouble(xvalueBox.Text);
                    double y = 0;
                    for (int j = 0; j < paramsResult.GetLength(0); j++)
                    {
                        y = y + Math.Pow(x, j) * paramsResult[j, 0];
                    }
                    ResultBox.Items.Add("X-value: " + x.ToString("#.000") + " Y-value: " + y.ToString("#.000"));
                    Settings.Default["Xvalue"] = xvalueBox.Text;
                }
                Settings.Default["Power"] = powerBox.Text;
            }
            else if (label3.Text == "Normal Distribution Fit")
            {
                if (!(PF is INormalDistributionFit))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                if (XaxiscomboBox.Text == "" && YaxiscomboBox.Text == "")
                {
                    return;
                }
                sortData();

                /*
                 * for (int i = 0; i < PF.GetData().Length; i++)
                 * {
                 *  ResultBox.Items.Add(PF.GetData()[i].WriteToLine());
                 * }*/
                if (YaxiscomboBox.Text.Contains("#"))
                {
                    string text = YaxiscomboBox.Text.Substring(10).Trim();
                    int    num  = Int32.Parse(text);
                    dataDict = PF.CalculateTimesEachX(num);
                    NormalDistributionInfo ndi = PF.GetNormalDistributionFitWithNumOfSamePoints(num);
                    NDinfo = ndi;
                    ResultBox.Items.Add("Mean: " + ndi.mean.ToString() + " SD: " + ndi.SD.ToString());
                }
                else
                {
                    if (XaxiscomboBox.Text == "" || YaxiscomboBox.Text == "")
                    {
                        return;
                    }
                    string text   = YaxiscomboBox.Text.Substring(5).Trim();
                    int    Yindex = Int32.Parse(text);
                    int    Xindex;
                    if (XaxiscomboBox.Text.Contains("TimeSpan"))
                    {
                        MessageBox.Show("We have not support Timespan in this algorithm yet.");
                        return;
                    }
                    else
                    {
                        text   = XaxiscomboBox.Text.Substring(5).Trim();
                        Xindex = Int32.Parse(text);
                    }
                    MyData[] MD = PF.GetData();
                    dataPoints = new points[MD.Count()];
                    for (int i = 0; i < MD.Count(); i++)
                    {
                        dataPoints[i].x = MD[i].GetParameters()[Xindex];
                        dataPoints[i].y = MD[i].GetParameters()[Yindex];
                    }
                    int num = Int32.Parse(text);
                    dataDict = PF.CalculateTimesEachX(num);
                    NormalDistributionInfo ndi = PF.GetNormalDistributionFitWithNumOfSamePoints(num);
                    NDinfo = ndi;
                    ResultBox.Items.Add("Mean: " + ndi.mean.ToString() + " SD: " + ndi.SD.ToString());
                }
                if (xvalueBox.Text != "")
                {
                    double x = Convert.ToDouble(xvalueBox.Text);
                    double y = 0;
                    y = (1 / (NDinfo.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x - NDinfo.mean), 2) / (2 * Math.Pow(NDinfo.SD, 2)));
                    int numberOfdata = 0;
                    foreach (var item in dataDict)
                    {
                        numberOfdata = numberOfdata + item.Value;
                    }
                    y = y * numberOfdata;
                    ResultBox.Items.Add("X-value: " + x.ToString("#.000") + " Y-value: " + y.ToString("#.000"));
                    Settings.Default["Xvalue"] = xvalueBox.Text;
                }
            }
            else if (label3.Text == "Logistic Regression")
            {
                if (!(PF is ILogisticRegression))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                if (comboBox2.Text != "")
                {
                    string text  = comboBox2.Text.Substring(5).Trim();
                    int    index = Int32.Parse(text);
                    dataDict = PF.CalculateTimesEachX(index);
                    double percentage = 0.1;
                    PF.SortData(index);
                    if (rangeBox.Text != "")
                    {
                        percentage = double.Parse(rangeBox.Text);
                    }
                    LogisticRegression LR = PF.GetLogisticRegressionParams(index, percentage);
                    LogisticInfo       LI = new LogisticInfo();
                    LI.LogisticParams    = new double[2];
                    LI.LogisticParams[0] = LR.Intercept;
                    LI.LogisticParams[1] = LR.GetOddsRatio(1) - 1;
                    ResultBox.Items.Add("Param0: " + LI.LogisticParams[0] + " Parma1: " + LI.LogisticParams[1]);
                    if (xvalueBox.Text != "")
                    {
                        double   x        = Convert.ToDouble(xvalueBox.Text);
                        double[] valueArr = new double[] { x, 0 };
                        ResultBox.Items.Add("Value: " + x + " Probability: " + LR.Probability(valueArr) + " Conclusion:" + LR.Decide(valueArr));
                    }
                    MyData[] MD        = PF.GetData();
                    double   threshold = -1;

                    /*
                     * for (int i = 0; i < MD.Length; i++)
                     * {
                     *  double value = MD[i].GetParameters()[index];
                     *  double[] valueArr = new double[] { value, 0 };
                     *  ResultBox.Items.Add("Value: " + value + " Probability: " + LR.Probability(valueArr) + " Conclusion:" + LR.Decide(valueArr));
                     * }*/
                    Dictionary <double, int> lowerDict  = new Dictionary <double, int>();
                    Dictionary <double, int> higherDict = new Dictionary <double, int>();
                    for (int i = 0; i < MD.Length; i++)
                    {
                        double   value    = MD[i].GetParameters()[index];
                        double[] valueArr = new double[] { value, 0 };
                        if (threshold == -1 && LR.Decide(valueArr) == true)
                        {
                            threshold = value;
                        }
                        if (threshold == -1)
                        {
                            if (lowerDict.ContainsKey(value))
                            {
                                lowerDict[value]++;
                            }
                            else
                            {
                                lowerDict.Add(value, 1);
                            }
                        }
                        else
                        {
                            if (higherDict.ContainsKey(value))
                            {
                                higherDict[value]++;
                            }
                            else
                            {
                                higherDict.Add(value, 1);
                            }
                        }
                    }
                    ResultBox.Items.Add("Threshold: " + threshold);
                }
            }
            else if (label3.Text == "Two Peaks")
            {
                if (!(PF is Ipeek))
                {
                    MessageBox.Show("Production Facade doesn't have this interface yet");
                    return;
                }
                if (peak1Box.Text != "" && peak2Box.Text != "")
                {
                    string text        = YaxiscomboBox.Text.Substring(10).Trim();
                    int    index       = Int32.Parse(text);
                    double peak1       = Convert.ToDouble(peak1Box.Text);
                    double peak2       = Convert.ToDouble(peak2Box.Text);
                    int    numOfpoints = 5;
                    if (numBox.Text != "")
                    {
                        numOfpoints = Int32.Parse(numBox.Text);
                    }
                    NormalDistributionInfo peak1Info = PF.GetPeakNormalDistribution(peak1, index, numOfpoints);
                    ResultBox.Items.Add("Mean: " + peak1Info.mean.ToString("#.000") + " SD: " + peak1Info.SD.ToString("#.000"));

                    NormalDistributionInfo peak2Info = PF.GetPeakNormalDistribution(peak2, index, numOfpoints);
                    ResultBox.Items.Add("Mean: " + peak2Info.mean.ToString("#.000") + " SD: " + peak2Info.SD.ToString("#.000"));

                    if (xvalueBox.Text != "")
                    {
                        double x   = Convert.ToDouble(xvalueBox.Text);
                        double end = 0;
                        double y   = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                        if (y < 0.01)
                        {
                            double x1 = x - 1;
                            double y1 = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x1 - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                            if (y1 < y)
                            {
                                end = x1;
                            }
                            else
                            {
                                end = x + 1;
                            }
                        }
                        else
                        {
                            double x1 = x - 1;
                            double y1 = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x1 - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                            if (y1 < y)
                            {
                                end = x1;
                                while (y1 > 0.01)
                                {
                                    end--;
                                    y1 = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                                }
                            }
                            else
                            {
                                end = x + 1;
                                y1  = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                                while (y1 > 0.01)
                                {
                                    end++;
                                    y1 = (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                                }
                            }
                        }
                        Func <double, double> f1 = (a) => (1 / (peak1Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((a - peak1Info.mean), 2) / (2 * Math.Pow(peak1Info.SD, 2)));
                        double result1           = MathNet.Numerics.Integration.NewtonCotesTrapeziumRule.IntegrateTwoPoint(f1, x, end);
                        if (x <= peak1)
                        {
                            result1 = 1 - Math.Abs(result1);
                            if (result1 > 1)
                            {
                                result1 = 1;
                            }
                        }
                        ResultBox.Items.Add("Probablity of keeping bad chips: " + Math.Abs(result1).ToString("#.000"));
                        double end1 = 0;
                        y = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                        if (y < 0.01)
                        {
                            double x1 = x - 1;
                            double y1 = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x1 - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                            if (y1 < y)
                            {
                                end1 = x1;
                            }
                            else
                            {
                                end1 = x + 1;
                            }
                        }
                        else
                        {
                            double x1 = x - 1;
                            double y1 = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((x1 - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                            if (y1 < y)
                            {
                                end1 = x1;
                                while (y1 > 0.01)
                                {
                                    end1--;
                                    y1 = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end1 - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                                }
                            }
                            else
                            {
                                end1 = x + 1;
                                y1   = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end1 - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                                while (y1 > 0.01)
                                {
                                    end1++;
                                    y1 = (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((end1 - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                                }
                            }
                        }
                        Func <double, double> f2 = (a) => (1 / (peak2Info.SD * Math.Sqrt(2 * Math.PI))) * Math.Exp(-Math.Pow((a - peak2Info.mean), 2) / (2 * Math.Pow(peak2Info.SD, 2)));
                        double result2           = MathNet.Numerics.Integration.NewtonCotesTrapeziumRule.IntegrateTwoPoint(f2, x, end1);
                        if (x >= peak2)
                        {
                            result2 = 1 - Math.Abs(result2);
                            if (result2 > 1)
                            {
                                result2 = 1;
                            }
                        }
                        ResultBox.Items.Add("probability of losing good chips: " + Math.Abs(result2).ToString("#.000"));
                    }
                    dataDict = PF.CalculateTimesEachX(index);



                    TDinfo            = new TwoDictInfo();
                    TDinfo.peak1Info  = peak1Info;
                    TDinfo.peak2Info  = peak2Info;
                    TDinfo.peak1value = peak1;
                    TDinfo.peak2value = peak2;
                    TDinfo.peak1times = dataDict[peak1];
                    TDinfo.peak2times = dataDict[peak2];
                    TDinfo.last       = dataDict.Keys.ToList().Last();
                    //peak1Box.Text = "";
                    // peak2Box.Text = "";
                }
                else
                {
                    if (XaxiscomboBox.Text == "" && YaxiscomboBox.Text == "")
                    {
                        return;
                    }
                    sortData();
                    Settings.Default["NumOfPoints"] = numBox.Text;
                    Settings.Default["Range"]       = rangeBox.Text;
                    if (YaxiscomboBox.Text.Contains("#"))
                    {
                        string text        = YaxiscomboBox.Text.Substring(10).Trim();
                        int    num         = Int32.Parse(text);
                        int    numOfpoints = 3;
                        double percentage  = 0.2;
                        if (numBox.Text != "")
                        {
                            numOfpoints = Int32.Parse(numBox.Text);
                        }
                        if (rangeBox.Text != "")
                        {
                            percentage = double.Parse(rangeBox.Text);
                        }
                        dataDict = PF.CalculateTimesEachX(num);
                        List <PeekValleyData> peaks = PF.GetPeaksWithNumOfSamePoints(num, numOfpoints, percentage);
                        peaksData = peaks;

                        /*
                         * for (int i = 0; i < PF.GetData().Length; i++)
                         * {
                         *  ResultBox.Items.Add(PF.GetData()[i].WriteToLine());
                         * }*/
                        if (peaksData.Count() == 0)
                        {
                            ResultBox.Items.Add("No Peak found yet.");
                        }
                        foreach (var item in peaks)
                        {
                            ResultBox.Items.Add("Peak Value: " + item.value + "   Times: " + item.times);
                        }
                    }
                    else if (YaxiscomboBox.Text != "")
                    {
                        string text = YaxiscomboBox.Text.Substring(5).Trim();

                        int Yindex = Int32.Parse(text);
                        // MessageBox.Show(Yindex.ToString());
                        int    numOfpoints = 3;
                        double percentage  = 0.2;
                        if (numBox.Text != "")
                        {
                            numOfpoints = Int32.Parse(numBox.Text);
                        }
                        if (rangeBox.Text != "")
                        {
                            percentage = double.Parse(rangeBox.Text);
                        }
                        text = XaxiscomboBox.Text.Substring(5).Trim();
                        int Xindex;
                        if (XaxiscomboBox.Text.Contains("TimeSpan"))
                        {
                            Xindex = -1;
                        }
                        else
                        {
                            Xindex = Int32.Parse(text);
                        }
                        MyData[] MD = PF.GetData();
                        dataPoints = new points[MD.Count()];
                        for (int i = 0; i < MD.Count(); i++)
                        {
                            dataPoints[i].x = MD[i].GetParameters()[Xindex];
                            dataPoints[i].y = MD[i].GetParameters()[Yindex];
                        }
                        List <PeekValleyData> peaks = PF.GetPeaksWithXY(Yindex, Xindex, numOfpoints, percentage);
                        peaksData = peaks;

                        /*
                         * for (int i = 0; i < PF.GetData().Length; i++)
                         * {
                         *  ResultBox.Items.Add(PF.GetData()[i].WriteToLine());
                         * }
                         * */
                        foreach (var item in peaks)
                        {
                            ResultBox.Items.Add("X: " + item.x + "   Y: " + item.y);
                        }
                    }
                    if (peaksData.Count() < 2)
                    {
                        ResultBox.Items.Add("We need at least two peaks in this algorithm");
                    }
                    else
                    {
                        peak1Box.Show();
                        peak2Box.Show();
                        label13.Show();
                        label12.Show();
                        xvalueBox.Show();
                        label10.Show();
                        peak1Box.Items.Clear();
                        peak2Box.Items.Clear();
                        points[] pts = GetPeakPoints();
                        foreach (var point in pts)
                        {
                            if (!peak1Box.Items.Contains(point.x))
                            {
                                peak1Box.Items.Add(point.x);
                            }
                            if (!peak2Box.Items.Contains(point.x))
                            {
                                peak2Box.Items.Add(point.x);
                            }
                        }
                    }
                }
            }
            Settings.Default.Save();
        }