示例#1
0
        public void PrintProbabilities(int noOfGroups)
        {
            List <IntersectionResultAnalysis> iras = IntersectionResult.IntersectionResultAnalysis(intersectionResults, noOfGroups);

            foreach (IntersectionResultAnalysis ira in iras)
            {
                Console.WriteLine("NoRep: {0}\t %: {1}\t groupSize: {2}\t Prob: {3}", ira.NoReplicatesAppeared, Math.Round(ira.PercentageOfUniqueness, 3), ira.NoCandidatesInGroup, Math.Round(ira.BayesianProbability, 3));
            }
        }
示例#2
0
        //------------------------------------------------------------------------------------------

        public void CalculateProbabilitiesForClass(int classOfInterest, double minSignal, double maxSignal)
        {
            //First we generate a cloned sparse matrix containing only the vectors that belong to the class of interest.
            SparseMatrix subSparseMatrix = new SparseMatrix();

            foreach (sparseMatrixRow r in sparseMatrix.theMatrixInRows)
            {
                if (r.Lable == classOfInterest)
                {
                    subSparseMatrix.addRow(r.Clone());
                }
            }

            //Now we need to make sure that all the rows in the sparse matrix contain only signal within the predefined bounds
            List <int> dimsToEliminate = new List <int>();
            List <int> allDimsTmp      = subSparseMatrix.allDims();

            foreach (int dim in allDimsTmp)
            {
                double avgSignal = subSparseMatrix.ExtractDimValues(dim, 0, true).Average();
                if (avgSignal < minSignal || avgSignal > maxSignal)
                {
                    dimsToEliminate.Add(dim);
                }
            }

            foreach (int dim in dimsToEliminate)
            {
                subSparseMatrix.eliminateDim(dim, 0, true);
            }

            //---
            int        noReplicates = subSparseMatrix.theMatrixInRows.Select(a => a.Lable = classOfInterest).ToList().Count;
            List <int> allDims      = subSparseMatrix.allDims();

            if (noReplicates > 9)
            {
                throw new Exception("To many replicates for the combination engine");
            }

            if (noReplicates < 2)
            {
                throw new Exception("You need at least two repplicates for each class");
            }


            //Step 1, obtain a list of lists of all combination of the number of classes
            List <List <int> > classCombinations = pTools.GetClassCombinations(noReplicates);

            classCombinations.Sort((a, b) => a.Count.CompareTo(b.Count));

            //Step 2 - Find the Intersection of all dims
            List <int> intersectionOfAllDims = GetIntersection(classCombinations[classCombinations.Count - 1], subSparseMatrix.theMatrixInRows);

            //Step 3 - Calculate all possible intersections
            intersectionResults = new List <IntersectionResult>();
            foreach (List <int> theRows in classCombinations)
            {
                List <int>         intersectionOfDims = GetIntersection(theRows, subSparseMatrix.theMatrixInRows);
                IntersectionResult ir = new IntersectionResult(theRows, intersectionOfDims);
                intersectionResults.Add(ir);
            }

            //Step 4 - Calculate the percentage of uniqueness for each overlap
            double noUniqueCount = 0;

            foreach (IntersectionResult ir in intersectionResults)
            {
                //Find the union of all other assays not belonging to the one at hand
                List <int> allOther = new List <int>();
                for (int i = 0; i < noReplicates; i++)
                {
                    if (!ir.TheSparseMatrixRows.Contains(i))
                    {
                        allOther.AddRange(subSparseMatrix.theMatrixInRows[i].Dims);
                    }
                }
                allOther = allOther.Distinct().ToList();

                List <int> intersectOfThisWithAllOthers = ir.IntersectingDims.Intersect(allOther).ToList();

                ir.NoUniqueComparedToTotal = ir.IntersectingDims.Count - intersectOfThisWithAllOthers.Count;
                noUniqueCount += (double)ir.NoUniqueComparedToTotal;
                double percentageOfUniqueness = (double)ir.NoUniqueComparedToTotal / (double)allDims.Count;
                ir.PercentageUniqueness = percentageOfUniqueness;
            }
        }
示例#3
0
 public List <IntersectionResultAnalysis> GetIntersectionResultAnalysis(int noOfGroups)
 {
     return(IntersectionResult.IntersectionResultAnalysis(intersectionResults, noOfGroups));
 }