示例#1
0
        private void GenerateNodes(Vector3[] vectorVertices, int[] triangles, out Vector3[] originalVertices, out Int3[] vertices)
        {
            if (vectorVertices.Length == 0 || triangles.Length == 0)
            {
                originalVertices = vectorVertices;
                vertices         = new Int3[0];
                this.nodes       = new TriangleMeshNode[0];
                return;
            }
            vertices = new Int3[vectorVertices.Length];
            int num = 0;

            for (int i = 0; i < vertices.Length; i++)
            {
                vertices[i] = (Int3)this.matrix.MultiplyPoint3x4(vectorVertices[i]);
            }
            Dictionary <Int3, int> dictionary = new Dictionary <Int3, int>();

            int[] array = new int[vertices.Length];
            for (int j = 0; j < vertices.Length; j++)
            {
                if (!dictionary.ContainsKey(vertices[j]))
                {
                    array[num] = j;
                    dictionary.Add(vertices[j], num);
                    num++;
                }
            }
            for (int k = 0; k < triangles.Length; k++)
            {
                Int3 key = vertices[triangles[k]];
                triangles[k] = dictionary[key];
            }
            Int3[] array2 = vertices;
            vertices         = new Int3[num];
            originalVertices = new Vector3[num];
            for (int l = 0; l < num; l++)
            {
                vertices[l]         = array2[array[l]];
                originalVertices[l] = vectorVertices[array[l]];
            }
            this.nodes = new TriangleMeshNode[triangles.Length / 3];
            int graphIndex = this.active.astarData.GetGraphIndex(this);

            for (int m = 0; m < this.nodes.Length; m++)
            {
                this.nodes[m] = new TriangleMeshNode(this.active);
                TriangleMeshNode triangleMeshNode = this.nodes[m];
                triangleMeshNode.GraphIndex = (uint)graphIndex;
                triangleMeshNode.Penalty    = this.initialPenalty;
                triangleMeshNode.Walkable   = true;
                triangleMeshNode.v0         = triangles[m * 3];
                triangleMeshNode.v1         = triangles[m * 3 + 1];
                triangleMeshNode.v2         = triangles[m * 3 + 2];
                if (!Polygon.IsClockwise(vertices[triangleMeshNode.v0], vertices[triangleMeshNode.v1], vertices[triangleMeshNode.v2]))
                {
                    int v = triangleMeshNode.v0;
                    triangleMeshNode.v0 = triangleMeshNode.v2;
                    triangleMeshNode.v2 = v;
                }
                if (Polygon.IsColinear(vertices[triangleMeshNode.v0], vertices[triangleMeshNode.v1], vertices[triangleMeshNode.v2]))
                {
                    Debug.DrawLine((Vector3)vertices[triangleMeshNode.v0], (Vector3)vertices[triangleMeshNode.v1], Color.red);
                    Debug.DrawLine((Vector3)vertices[triangleMeshNode.v1], (Vector3)vertices[triangleMeshNode.v2], Color.red);
                    Debug.DrawLine((Vector3)vertices[triangleMeshNode.v2], (Vector3)vertices[triangleMeshNode.v0], Color.red);
                }
                triangleMeshNode.UpdatePositionFromVertices();
            }
            Dictionary <Int2, TriangleMeshNode> dictionary2 = new Dictionary <Int2, TriangleMeshNode>();
            int n    = 0;
            int num2 = 0;

            while (n < triangles.Length)
            {
                dictionary2[new Int2(triangles[n], triangles[n + 1])]     = this.nodes[num2];
                dictionary2[new Int2(triangles[n + 1], triangles[n + 2])] = this.nodes[num2];
                dictionary2[new Int2(triangles[n + 2], triangles[n])]     = this.nodes[num2];
                num2++;
                n += 3;
            }
            List <MeshNode> list  = new List <MeshNode>();
            List <uint>     list2 = new List <uint>();
            int             num3  = 0;
            int             num4  = 0;

            while (num3 < triangles.Length)
            {
                list.Clear();
                list2.Clear();
                TriangleMeshNode triangleMeshNode2 = this.nodes[num4];
                for (int num5 = 0; num5 < 3; num5++)
                {
                    TriangleMeshNode triangleMeshNode3;
                    if (dictionary2.TryGetValue(new Int2(triangles[num3 + (num5 + 1) % 3], triangles[num3 + num5]), out triangleMeshNode3))
                    {
                        list.Add(triangleMeshNode3);
                        list2.Add((uint)(triangleMeshNode2.position - triangleMeshNode3.position).costMagnitude);
                    }
                }
                triangleMeshNode2.connections     = list.ToArray();
                triangleMeshNode2.connectionCosts = list2.ToArray();
                num4++;
                num3 += 3;
            }
            NavMeshGraph.RebuildBBTree(this);
        }
示例#2
0
        /** Prepares the path. Searches for start and end nodes and does some simple checking if a path is at all possible */
        public override void Prepare()
        {
            AstarProfiler.StartProfile("Get Nearest");

            //Initialize the NNConstraint
            nnConstraint.tags = enabledTags;
            NNInfo startNNInfo = AstarPath.active.GetNearest(startPoint, nnConstraint, startHint);

            //Tell the NNConstraint which node was found as the start node if it is a PathNNConstraint and not a normal NNConstraint
            PathNNConstraint pathNNConstraint = nnConstraint as PathNNConstraint;

            if (pathNNConstraint != null)
            {
                pathNNConstraint.SetStart(startNNInfo.node);
            }

            startPoint    = startNNInfo.clampedPosition;
            startIntPoint = (Int3)startPoint;
            startNode     = startNNInfo.node;

            //If it is declared that this path type has an end point
            //Some path types might want to use most of the ABPath code, but will not have an explicit end point at start
            if (hasEndPoint)
            {
                NNInfo endNNInfo = AstarPath.active.GetNearest(endPoint, nnConstraint, endHint);
                endPoint = endNNInfo.clampedPosition;
                hTarget  = (Int3)endPoint;
                endNode  = endNNInfo.node;
            }

            AstarProfiler.EndProfile();

#if ASTARDEBUG
            Debug.DrawLine((Vector3)startNode.position, startPoint, Color.blue);
            Debug.DrawLine((Vector3)endNode.position, endPoint, Color.blue);
#endif

            if (startNode == null && (hasEndPoint && endNode == null))
            {
                Error();
                LogError("Couldn't find close nodes to the start point or the end point");
                return;
            }
            if (startNode == null)
            {
                Error();
                LogError("Couldn't find a close node to the start point");
                return;
            }
            if (endNode == null && hasEndPoint)
            {
                Error();
                LogError("Couldn't find a close node to the end point");
                return;
            }

            if (!startNode.walkable)
            {
#if ASTARDEBUG
                Debug.DrawRay(startPoint, Vector3.up, Color.red);
                Debug.DrawLine(startPoint, (Vector3)startNode.position, Color.red);
#endif
                Error();
                LogError("The node closest to the start point is not walkable");
                return;
            }

            if (hasEndPoint && !endNode.walkable)
            {
                Error();
                LogError("The node closest to the end point is not walkable");
                return;
            }

            if (hasEndPoint && startNode.area != endNode.area)
            {
                Error();
                LogError("There is no valid path to the target (start area: " + startNode.area + ", target area: " + endNode.area + ")");
                return;
            }
        }
示例#3
0
        /** Generates a navmesh. Based on the supplied vertices and triangles. Memory usage is about O(n) */
        void GenerateNodes(Vector3[] vectorVertices, int[] triangles, out Vector3[] originalVertices, out Int3[] vertices)
        {
            Profiler.BeginSample("Init");

            if (vectorVertices.Length == 0 || triangles.Length == 0)
            {
                originalVertices = vectorVertices;
                vertices         = new Int3[0];
                //graph.CreateNodes (0);
                nodes = new TriangleMeshNode[0];
                return;
            }

            vertices = new Int3[vectorVertices.Length];

            int c = 0;

            for (int i = 0; i < vertices.Length; i++)
            {
                vertices[i] = (Int3)matrix.MultiplyPoint3x4(vectorVertices[i]);
            }

            var hashedVerts = new Dictionary <Int3, int> ();

            var newVertices = new int[vertices.Length];

            Profiler.EndSample();
            Profiler.BeginSample("Hashing");

            for (int i = 0; i < vertices.Length; i++)
            {
                if (!hashedVerts.ContainsKey(vertices[i]))
                {
                    newVertices[c] = i;
                    hashedVerts.Add(vertices[i], c);
                    c++;
                }
            }

            for (int x = 0; x < triangles.Length; x++)
            {
                Int3 vertex = vertices[triangles[x]];

                triangles[x] = hashedVerts[vertex];
            }

            Int3[] totalIntVertices = vertices;
            vertices         = new Int3[c];
            originalVertices = new Vector3[c];
            for (int i = 0; i < c; i++)
            {
                vertices[i]         = totalIntVertices[newVertices[i]];
                originalVertices[i] = vectorVertices[newVertices[i]];
            }

            Profiler.EndSample();
            Profiler.BeginSample("Constructing Nodes");

            nodes = new TriangleMeshNode[triangles.Length / 3];

            int graphIndex = active.astarData.GetGraphIndex(this);

            // Does not have to set this, it is set in ScanInternal
            //TriangleMeshNode.SetNavmeshHolder ((int)graphIndex,this);

            for (int i = 0; i < nodes.Length; i++)
            {
                nodes[i] = new TriangleMeshNode(active);
                TriangleMeshNode node = nodes[i];                //new MeshNode ();

                node.GraphIndex = (uint)graphIndex;
                node.Penalty    = initialPenalty;
                node.Walkable   = true;


                node.v0 = triangles[i * 3];
                node.v1 = triangles[i * 3 + 1];
                node.v2 = triangles[i * 3 + 2];

                if (!Polygon.IsClockwise(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    //Debug.DrawLine (vertices[node.v0],vertices[node.v1],Color.red);
                    //Debug.DrawLine (vertices[node.v1],vertices[node.v2],Color.red);
                    //Debug.DrawLine (vertices[node.v2],vertices[node.v0],Color.red);

                    int tmp = node.v0;
                    node.v0 = node.v2;
                    node.v2 = tmp;
                }

                if (Polygon.IsColinear(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.red);
                }

                // Make sure position is correctly set
                node.UpdatePositionFromVertices();
            }

            Profiler.EndSample();

            var sides = new Dictionary <Int2, TriangleMeshNode>();

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                sides[new Int2(triangles[i + 0], triangles[i + 1])] = nodes[j];
                sides[new Int2(triangles[i + 1], triangles[i + 2])] = nodes[j];
                sides[new Int2(triangles[i + 2], triangles[i + 0])] = nodes[j];
            }

            Profiler.BeginSample("Connecting Nodes");

            var connections     = new List <MeshNode> ();
            var connectionCosts = new List <uint> ();

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                connections.Clear();
                connectionCosts.Clear();

                TriangleMeshNode node = nodes[j];

                for (int q = 0; q < 3; q++)
                {
                    TriangleMeshNode other;
                    if (sides.TryGetValue(new Int2(triangles[i + ((q + 1) % 3)], triangles[i + q]), out other))
                    {
                        connections.Add(other);
                        connectionCosts.Add((uint)(node.position - other.position).costMagnitude);
                    }
                }

                node.connections     = connections.ToArray();
                node.connectionCosts = connectionCosts.ToArray();
            }

            Profiler.EndSample();
            Profiler.BeginSample("Rebuilding BBTree");

            RebuildBBTree(this);

            Profiler.EndSample();

#if ASTARDEBUG
            for (int i = 0; i < nodes.Length; i++)
            {
                TriangleMeshNode node = nodes[i] as TriangleMeshNode;

                float a1 = Polygon.TriangleArea2((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], (Vector3)vertices[node.v2]);

                long a2 = Polygon.TriangleArea2(vertices[node.v0], vertices[node.v1], vertices[node.v2]);
                if (a1 * a2 < 0)
                {
                    Debug.LogError(a1 + " " + a2);
                }


                if (Polygon.IsClockwise(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.green);
                    Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.green);
                    Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.green);
                }
                else
                {
                    Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.red);
                }
            }
#endif
            //Debug.Log ("Graph Generation - NavMesh - Time to compute graph "+((Time.realtimeSinceStartup-startTime)*1000F).ToString ("0")+"ms");
        }
示例#4
0
        public List <Vector3> SmoothOffsetSimple(List <Vector3> path)
        {
            if (path.Count <= 2 || iterations <= 0)
            {
                return(path);
            }

            if (iterations > 12)
            {
                Debug.LogWarning("A very high iteration count was passed, won't let this one through");
                return(path);
            }

            int maxLength = (path.Count - 2) * (int)Mathf.Pow(2, iterations) + 2;

            List <Vector3> subdivided = ListPool <Vector3> .Claim(maxLength);

            //new Vector3[(path.Length-2)*(int)Mathf.Pow(2,iterations)+2];
            List <Vector3> subdivided2 = ListPool <Vector3> .Claim(maxLength);

            //new Vector3[(path.Length-2)*(int)Mathf.Pow(2,iterations)+2];

            for (int i = 0; i < maxLength; i++)
            {
                subdivided.Add(Vector3.zero); subdivided2.Add(Vector3.zero);
            }

            for (int i = 0; i < path.Count; i++)
            {
                subdivided[i] = path[i];
            }

            for (int iteration = 0; iteration < iterations; iteration++)
            {
                int currentPathLength = (path.Count - 2) * (int)Mathf.Pow(2, iteration) + 2;

                //Switch the arrays
                List <Vector3> tmp = subdivided;
                subdivided  = subdivided2;
                subdivided2 = tmp;

                const float nextMultiplier = 1F;

                for (int i = 0; i < currentPathLength - 1; i++)
                {
                    Vector3 current = subdivided2[i];
                    Vector3 next    = subdivided2[i + 1];

                    Vector3 normal = Vector3.Cross(next - current, Vector3.up);
                    normal = normal.normalized;

                    //This didn't work very well, made the path jaggy

                    /*Vector3 dir = next-current;
                     * dir *= strength*0.5F;
                     * current += dir;
                     * next -= dir;*/

                    bool firstRight  = false;
                    bool secondRight = false;
                    bool setFirst    = false;
                    bool setSecond   = false;
                    if (i != 0 && !Polygon.IsColinear(current, next, subdivided2[i - 1]))
                    {
                        setFirst   = true;
                        firstRight = Polygon.Left(current, next, subdivided2[i - 1]);
                    }
                    if (i < currentPathLength - 1 && !Polygon.IsColinear(current, next, subdivided2[i + 2]))
                    {
                        setSecond   = true;
                        secondRight = Polygon.Left(current, next, subdivided2[i + 2]);
                    }

                    if (setFirst)
                    {
                        subdivided[i * 2] = current + (firstRight ? normal * offset * nextMultiplier : -normal * offset * nextMultiplier);
                    }
                    else
                    {
                        subdivided[i * 2] = current;
                    }

                    //Didn't work very well

                    /*if (setFirst && setSecond) {
                     *      if (firstRight != secondRight) {
                     *              nextMultiplier = 0.5F;
                     *      } else {
                     *              nextMultiplier = 1F;
                     *      }
                     * }*/

                    if (setSecond)
                    {
                        subdivided[i * 2 + 1] = next + (secondRight ? normal * offset * nextMultiplier : -normal * offset * nextMultiplier);
                    }
                    else
                    {
                        subdivided[i * 2 + 1] = next;
                    }
                }

                subdivided[(path.Count - 2) * (int)Mathf.Pow(2, iteration + 1) + 2 - 1] = subdivided2[currentPathLength - 1];
            }

        #if ASTARDEBUG
            for (int i = 0; i < subdivided.Count - 1; i++)
            {
                Debug.DrawLine(subdivided[i], subdivided[i + 1], Color.red);
            }
        #endif

            ListPool <Vector3> .Release(subdivided2);

            return(subdivided);
        }
示例#5
0
 void DrawGraphLine(int index, Matrix4x4 m, float x1, float x2, float y1, float y2, Color color)
 {
     Debug.DrawLine(cam.ScreenToWorldPoint(m.MultiplyPoint3x4(new Vector3(x1, y1))), cam.ScreenToWorldPoint(m.MultiplyPoint3x4(new Vector3(x2, y2))), color);
 }
示例#6
0
        /** Generates a navmesh. Based on the supplied vertices and triangles */
        void GenerateNodes(Vector3[] vectorVertices, int[] triangles, out Vector3[] originalVertices, out Int3[] vertices)
        {
            UnityEngine.Profiling.Profiler.BeginSample("Init");

            if (vectorVertices.Length == 0 || triangles.Length == 0)
            {
                originalVertices = vectorVertices;
                vertices         = new Int3[0];
                nodes            = new TriangleMeshNode[0];
                return;
            }

            vertices = new Int3[vectorVertices.Length];

            int c = 0;

            for (int i = 0; i < vertices.Length; i++)
            {
                vertices[i] = (Int3)matrix.MultiplyPoint3x4(vectorVertices[i]);
            }

            var hashedVerts = new Dictionary <Int3, int>();

            var newVertices = new int[vertices.Length];

            UnityEngine.Profiling.Profiler.EndSample();
            UnityEngine.Profiling.Profiler.BeginSample("Hashing");

            for (int i = 0; i < vertices.Length; i++)
            {
                if (!hashedVerts.ContainsKey(vertices[i]))
                {
                    newVertices[c] = i;
                    hashedVerts.Add(vertices[i], c);
                    c++;
                }
            }

            for (int x = 0; x < triangles.Length; x++)
            {
                Int3 vertex = vertices[triangles[x]];

                triangles[x] = hashedVerts[vertex];
            }

            Int3[] totalIntVertices = vertices;
            vertices         = new Int3[c];
            originalVertices = new Vector3[c];
            for (int i = 0; i < c; i++)
            {
                vertices[i]         = totalIntVertices[newVertices[i]];
                originalVertices[i] = vectorVertices[newVertices[i]];
            }

            UnityEngine.Profiling.Profiler.EndSample();
            UnityEngine.Profiling.Profiler.BeginSample("Constructing Nodes");

            nodes = new TriangleMeshNode[triangles.Length / 3];

            int graphIndex = active.astarData.GetGraphIndex(this);

            // Does not have to set this, it is set in ScanInternal
            //TriangleMeshNode.SetNavmeshHolder ((int)graphIndex,this);

            for (int i = 0; i < nodes.Length; i++)
            {
                nodes[i] = new TriangleMeshNode(active);
                TriangleMeshNode node = nodes[i];                //new MeshNode ();

                node.GraphIndex = (uint)graphIndex;
                node.Penalty    = initialPenalty;
                node.Walkable   = true;


                node.v0 = triangles[i * 3];
                node.v1 = triangles[i * 3 + 1];
                node.v2 = triangles[i * 3 + 2];

                if (!VectorMath.IsClockwiseXZ(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    //Debug.DrawLine (vertices[node.v0],vertices[node.v1],Color.red);
                    //Debug.DrawLine (vertices[node.v1],vertices[node.v2],Color.red);
                    //Debug.DrawLine (vertices[node.v2],vertices[node.v0],Color.red);

                    int tmp = node.v0;
                    node.v0 = node.v2;
                    node.v2 = tmp;
                }

                if (VectorMath.IsColinearXZ(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.red);
                }

                // Make sure position is correctly set
                node.UpdatePositionFromVertices();
            }

            UnityEngine.Profiling.Profiler.EndSample();

            var sides = new Dictionary <Int2, TriangleMeshNode>();

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                sides[new Int2(triangles[i + 0], triangles[i + 1])] = nodes[j];
                sides[new Int2(triangles[i + 1], triangles[i + 2])] = nodes[j];
                sides[new Int2(triangles[i + 2], triangles[i + 0])] = nodes[j];
            }

            UnityEngine.Profiling.Profiler.BeginSample("Connecting Nodes");

            var connections     = new List <MeshNode>();
            var connectionCosts = new List <uint>();

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                connections.Clear();
                connectionCosts.Clear();

                TriangleMeshNode node = nodes[j];

                for (int q = 0; q < 3; q++)
                {
                    TriangleMeshNode other;
                    if (sides.TryGetValue(new Int2(triangles[i + ((q + 1) % 3)], triangles[i + q]), out other))
                    {
                        connections.Add(other);
                        connectionCosts.Add((uint)(node.position - other.position).costMagnitude);
                    }
                }

                node.connections     = connections.ToArray();
                node.connectionCosts = connectionCosts.ToArray();
            }

            UnityEngine.Profiling.Profiler.EndSample();
            UnityEngine.Profiling.Profiler.BeginSample("Rebuilding BBTree");

            RebuildBBTree(this);

            UnityEngine.Profiling.Profiler.EndSample();
        }
示例#7
0
        /** Generates a navmesh. Based on the supplied vertices and triangles. Memory usage is about O(n) */
        void GenerateNodes(Vector3[] vectorVertices, int[] triangles, out Vector3[] originalVertices, out Int3[] vertices)
        {
            Profiler.BeginSample("Init");

            if (vectorVertices.Length == 0 || triangles.Length == 0)
            {
                originalVertices = vectorVertices;
                vertices         = new Int3[0];
                //graph.CreateNodes (0);
                nodes = new TriangleMeshNode[0];
                return;
            }

            vertices = new Int3[vectorVertices.Length];

            //Backup the original vertices
            //for (int i=0;i<vectorVertices.Length;i++) {
            //	vectorVertices[i] = graph.matrix.MultiplyPoint (vectorVertices[i]);
            //}

            var c = 0;

            for (var i = 0; i < vertices.Length; i++)
            {
                vertices[i] = (Int3)matrix.MultiplyPoint3x4(vectorVertices[i]);
            }

            var hashedVerts = new Dictionary <Int3, int> ();

            var newVertices = new int[vertices.Length];

            Profiler.EndSample();
            Profiler.BeginSample("Hashing");

            for (var i = 0; i < vertices.Length; i++)
            {
                if (!hashedVerts.ContainsKey(vertices[i]))
                {
                    newVertices[c] = i;
                    hashedVerts.Add(vertices[i], c);
                    c++;
                }                // else {
                //Debug.Log ("Hash Duplicate "+hash+" "+vertices[i].ToString ());
                //}
            }

            /*newVertices[c] = vertices.Length-1;
             *
             * if (!hashedVerts.ContainsKey (vertices[newVertices[c]])) {
             *
             *      hashedVerts.Add (vertices[newVertices[c]], c);
             *      c++;
             * }*/

            for (var x = 0; x < triangles.Length; x++)
            {
                var vertex = vertices[triangles[x]];

                triangles[x] = hashedVerts[vertex];
            }

            /*for (int i=0;i<triangles.Length;i += 3) {
             *
             *      Vector3 offset = Vector3.forward*i*0.01F;
             *      Debug.DrawLine (newVertices[triangles[i]]+offset,newVertices[triangles[i+1]]+offset,Color.blue);
             *      Debug.DrawLine (newVertices[triangles[i+1]]+offset,newVertices[triangles[i+2]]+offset,Color.blue);
             *      Debug.DrawLine (newVertices[triangles[i+2]]+offset,newVertices[triangles[i]]+offset,Color.blue);
             * }*/

            var totalIntVertices = vertices;

            vertices         = new Int3[c];
            originalVertices = new Vector3[c];
            for (var i = 0; i < c; i++)
            {
                vertices[i]         = totalIntVertices[newVertices[i]];        //(Int3)graph.matrix.MultiplyPoint (vectorVertices[i]);
                originalVertices[i] = (Vector3)vectorVertices[newVertices[i]]; //vectorVertices[newVertices[i]];
            }

            Profiler.EndSample();
            Profiler.BeginSample("Constructing Nodes");

            //graph.CreateNodes (triangles.Length/3);//new Node[triangles.Length/3];
            nodes = new TriangleMeshNode[triangles.Length / 3];

            var graphIndex = active.astarData.GetGraphIndex(this);

            // Does not have to set this, it is set in ScanInternal
            //TriangleMeshNode.SetNavmeshHolder ((int)graphIndex,this);

            for (var i = 0; i < nodes.Length; i++)
            {
                nodes[i] = new TriangleMeshNode(active);
                var node = nodes[i];                //new MeshNode ();

                node.GraphIndex = (uint)graphIndex;
                node.Penalty    = initialPenalty;
                node.Walkable   = true;


                node.v0 = triangles[i * 3];
                node.v1 = triangles[i * 3 + 1];
                node.v2 = triangles[i * 3 + 2];

                if (!Polygon.IsClockwise(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    //Debug.DrawLine (vertices[node.v0],vertices[node.v1],Color.red);
                    //Debug.DrawLine (vertices[node.v1],vertices[node.v2],Color.red);
                    //Debug.DrawLine (vertices[node.v2],vertices[node.v0],Color.red);

                    var tmp = node.v0;
                    node.v0 = node.v2;
                    node.v2 = tmp;
                }

                if (Polygon.IsColinear(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
                {
                    Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.red);
                    Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.red);
                }

                // Make sure position is correctly set
                node.UpdatePositionFromVertices();
            }

            Profiler.EndSample();

            var sides = new Dictionary <Int2, TriangleMeshNode>();

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                sides[new Int2(triangles[i + 0], triangles[i + 1])] = nodes[j];
                sides[new Int2(triangles[i + 1], triangles[i + 2])] = nodes[j];
                sides[new Int2(triangles[i + 2], triangles[i + 0])] = nodes[j];
            }

            Profiler.BeginSample("Connecting Nodes");

            var connections     = new List <MeshNode> ();
            var connectionCosts = new List <uint> ();

            var identicalError = 0;

            for (int i = 0, j = 0; i < triangles.Length; j += 1, i += 3)
            {
                connections.Clear();
                connectionCosts.Clear();

                //Int3 indices = new Int3(triangles[i],triangles[i+1],triangles[i+2]);

                var node = nodes[j];

                for (var q = 0; q < 3; q++)
                {
                    TriangleMeshNode other;
                    if (sides.TryGetValue(new Int2(triangles[i + ((q + 1) % 3)], triangles[i + q]), out other))
                    {
                        connections.Add(other);
                        connectionCosts.Add((uint)(node.position - other.position).costMagnitude);
                    }
                }

                node.connections     = connections.ToArray();
                node.connectionCosts = connectionCosts.ToArray();
            }

            if (identicalError > 0)
            {
                Debug.LogError("One or more triangles are identical to other triangles, this is not a good thing to have in a navmesh\nIncreasing the scale of the mesh might help\nNumber of triangles with error: " + identicalError + "\n");
            }

            Profiler.EndSample();
            Profiler.BeginSample("Rebuilding BBTree");

            RebuildBBTree(this);

            Profiler.EndSample();

            //Debug.Log ("Graph Generation - NavMesh - Time to compute graph "+((Time.realtimeSinceStartup-startTime)*1000F).ToString ("0")+"ms");
        }
示例#8
0
        /** Opens a node using Jump Point Search.
         * \see http://en.wikipedia.org/wiki/Jump_point_search
         */
        public void JPSOpen(Path path, PathNode pathNode, PathHandler handler)
        {
            GridGraph gg = GetGridGraph(GraphIndex);

            int[]      neighbourOffsets = gg.neighbourOffsets;
            GridNode[] nodes            = gg.nodes;
            ushort     pid = handler.PathID;

            int noncyclic = gridFlags & 0xFF;
            int cyclic    = 0;

            for (int i = 0; i < 8; i++)
            {
                cyclic |= ((noncyclic >> i) & 0x1) << JPSCyclic[i];
            }

            var parent    = pathNode.parent != null ? pathNode.parent.node as GridNode : null;
            int parentDir = -1;

            if (parent != null)
            {
                int diff = parent != null ? parent.nodeInGridIndex - nodeInGridIndex : 0;

                int x2 = nodeInGridIndex % gg.width;
                int x1 = parent.nodeInGridIndex % gg.width;
                if (diff < 0)
                {
                    if (x1 == x2)
                    {
                        parentDir = 0;
                    }
                    else if (x1 < x2)
                    {
                        parentDir = 7;
                    }
                    else
                    {
                        parentDir = 4;
                    }
                }
                else
                {
                    if (x1 == x2)
                    {
                        parentDir = 1;
                    }
                    else if (x1 < x2)
                    {
                        parentDir = 6;
                    }
                    else
                    {
                        parentDir = 5;
                    }
                }
            }
            int cyclicParentDir = 0;
            // Check for -1

            int forced = 0;

            if (parentDir != -1)
            {
                cyclicParentDir = JPSCyclic[parentDir];
                // Loop around to be able to assume -X is where we came from
                cyclic = ((cyclic >> cyclicParentDir) | ((cyclic << 8) >> cyclicParentDir)) & 0xFF;
            }
            else
            {
                forced = 0xFF;
                //parentDir = 0;
            }

            bool diagonal = parentDir >= 4;
            int  natural;

            if (diagonal)
            {
                for (int i = 0; i < 8; i++)
                {
                    if (((cyclic >> i) & 1) == 0)
                    {
                        forced |= JPSForcedDiagonal[i];
                    }
                }

                natural = JPSNaturalDiagonalNeighbours;
            }
            else
            {
                for (int i = 0; i < 8; i++)
                {
                    if (((cyclic >> i) & 1) == 0)
                    {
                        forced |= JPSForced[i];
                    }
                }

                natural = JPSNaturalStraightNeighbours;
            }

            // Don't force nodes we cannot reach anyway
            forced  &= cyclic;
            natural &= cyclic;

            int nb = forced | natural;


            /*if ( ((Vector3)position - new Vector3(0.5f,0,3.5f)).magnitude < 0.5f ) {
             *  Debug.Log (noncyclic + " " + parentDir + " " + cyclicParentDir);
             *  Debug.Log (System.Convert.ToString (cyclic, 2)+"\n"+System.Convert.ToString (noncyclic, 2)+"\n"+System.Convert.ToString (natural, 2)+"\n"+System.Convert.ToString (forced, 2));
             * }*/

            for (int i = 0; i < 8; i++)
            {
                if (((nb >> i) & 1) != 0)
                {
                    int      oi    = JPSInverseCyclic[(i + cyclicParentDir) % 8];
                    GridNode other = nodes[nodeInGridIndex + neighbourOffsets[oi]];

#if ASTARDEBUG
                    if (((forced >> i) & 1) != 0)
                    {
                        Debug.DrawLine((Vector3)position, Vector3.Lerp((Vector3)other.position, (Vector3)position, 0.6f), Color.red);
                    }
                    if (((natural >> i) & 1) != 0)
                    {
                        Debug.DrawLine((Vector3)position + Vector3.up * 0.2f, Vector3.Lerp((Vector3)other.position, (Vector3)position, 0.6f) + Vector3.up * 0.2f, Color.green);
                    }
#endif

                    if (oi < 4)
                    {
                        other = JPSJumpStraight(other, path, handler, JPSInverseCyclic[(i + 4 + cyclicParentDir) % 8]);
                    }
                    else
                    {
                        other = other.JPSJumpDiagonal(path, handler, JPSInverseCyclic[(i + 4 + cyclicParentDir) % 8]);
                    }

                    if (other != null)
                    {
                        //Debug.DrawLine ( (Vector3)position + Vector3.up*0.0f, (Vector3)other.position + Vector3.up*0.3f, Color.cyan);
                        //Debug.DrawRay ( (Vector3)other.position, Vector3.up, Color.cyan);
                        //GridNode other = nodes[nodeInGridIndex + neighbourOffsets[i]];
                        //if (!path.CanTraverse (other)) continue;

                        PathNode otherPN = handler.GetPathNode(other);

                        if (otherPN.pathID != pid)
                        {
                            otherPN.parent = pathNode;
                            otherPN.pathID = pid;

                            otherPN.cost = (uint)(other.position - position).costMagnitude;                            //neighbourCosts[i];

                            otherPN.H = path.CalculateHScore(other);
                            other.UpdateG(path, otherPN);

                            //Debug.Log ("G " + otherPN.G + " F " + otherPN.F);
                            handler.heap.Add(otherPN);
                            //Debug.DrawRay ((Vector3)otherPN.node.Position, Vector3.up,Color.blue);
                        }
                        else
                        {
                            //If not we can test if the path from the current node to this one is a better one then the one already used
                            uint tmpCost = (uint)(other.position - position).costMagnitude;                            //neighbourCosts[i];

                            if (pathNode.G + tmpCost + path.GetTraversalCost(other) < otherPN.G)
                            {
                                //Debug.Log ("Path better from " + NodeIndex + " to " + otherPN.node.NodeIndex + " " + (pathNode.G+tmpCost+path.GetTraversalCost(other)) + " < " + otherPN.G);
                                otherPN.cost = tmpCost;

                                otherPN.parent = pathNode;

                                other.UpdateRecursiveG(path, otherPN, handler);

                                //Or if the path from this node ("other") to the current ("current") is better
                            }
                            else if (otherPN.G + tmpCost + path.GetTraversalCost(this) < pathNode.G)
                            {
                                //Debug.Log ("Path better from " + otherPN.node.NodeIndex + " to " + NodeIndex + " " + (otherPN.G+tmpCost+path.GetTraversalCost (this)) + " < " + pathNode.G);
                                pathNode.parent = otherPN;
                                pathNode.cost   = tmpCost;

                                UpdateRecursiveG(path, pathNode, handler);
                            }
                        }
                    }
                }

#if ASTARDEBUG
                if (i == 0 && parentDir != -1 && this.nodeInGridIndex > 10)
                {
                    int oi = JPSInverseCyclic[(i + cyclicParentDir) % 8];

                    if (nodeInGridIndex + neighbourOffsets[oi] < 0 || nodeInGridIndex + neighbourOffsets[oi] >= nodes.Length)
                    {
                        //Debug.LogError ("ERR: " + (nodeInGridIndex + neighbourOffsets[oi]) + " " + cyclicParentDir + " " + parentDir + " Reverted " + oi);
                        //Debug.DrawRay ((Vector3)position, Vector3.up, Color.red);
                    }
                    else
                    {
                        GridNode other = nodes[nodeInGridIndex + neighbourOffsets[oi]];
                        Debug.DrawLine((Vector3)position - Vector3.up * 0.2f, Vector3.Lerp((Vector3)other.position, (Vector3)position, 0.6f) - Vector3.up * 0.2f, Color.blue);
                    }
                }
#endif
            }
        }
示例#9
0
 private void GenerateNodes(Vector3[] vectorVertices, int[] triangles, out Vector3[] originalVertices, out VInt3[] vertices)
 {
     if ((vectorVertices.Length == 0) || (triangles.Length == 0))
     {
         originalVertices = vectorVertices;
         vertices         = new VInt3[0];
         this.nodes       = new TriangleMeshNode[0];
     }
     else
     {
         vertices = new VInt3[vectorVertices.Length];
         int index = 0;
         for (int i = 0; i < vertices.Length; i++)
         {
             vertices[i] = (VInt3)this.matrix.MultiplyPoint3x4(vectorVertices[i]);
         }
         Dictionary <VInt3, int> dictionary = new Dictionary <VInt3, int>();
         int[] numArray = new int[vertices.Length];
         for (int j = 0; j < vertices.Length; j++)
         {
             if (!dictionary.ContainsKey(vertices[j]))
             {
                 numArray[index] = j;
                 dictionary.Add(vertices[j], index);
                 index++;
             }
         }
         for (int k = 0; k < triangles.Length; k++)
         {
             VInt3 num5 = vertices[triangles[k]];
             triangles[k] = dictionary[num5];
         }
         VInt3[] numArray2 = vertices;
         vertices         = new VInt3[index];
         originalVertices = new Vector3[index];
         for (int m = 0; m < index; m++)
         {
             vertices[m]         = numArray2[numArray[m]];
             originalVertices[m] = vectorVertices[numArray[m]];
         }
         this.nodes = new TriangleMeshNode[triangles.Length / 3];
         int graphIndex = base.active.astarData.GetGraphIndex(this);
         for (int n = 0; n < this.nodes.Length; n++)
         {
             this.nodes[n] = new TriangleMeshNode(base.active);
             TriangleMeshNode node = this.nodes[n];
             node.GraphIndex = (uint)graphIndex;
             node.Penalty    = base.initialPenalty;
             node.Walkable   = true;
             node.v0         = triangles[n * 3];
             node.v1         = triangles[(n * 3) + 1];
             node.v2         = triangles[(n * 3) + 2];
             if (!Polygon.IsClockwise(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
             {
                 int num9 = node.v0;
                 node.v0 = node.v2;
                 node.v2 = num9;
             }
             if (Polygon.IsColinear(vertices[node.v0], vertices[node.v1], vertices[node.v2]))
             {
                 Debug.DrawLine((Vector3)vertices[node.v0], (Vector3)vertices[node.v1], Color.red);
                 Debug.DrawLine((Vector3)vertices[node.v1], (Vector3)vertices[node.v2], Color.red);
                 Debug.DrawLine((Vector3)vertices[node.v2], (Vector3)vertices[node.v0], Color.red);
             }
             node.UpdatePositionFromVertices();
         }
         DictionaryView <VInt2, TriangleMeshNode> view = new DictionaryView <VInt2, TriangleMeshNode>();
         int num10 = 0;
         int num11 = 0;
         while (num10 < triangles.Length)
         {
             view[new VInt2(triangles[num10], triangles[num10 + 1])]     = this.nodes[num11];
             view[new VInt2(triangles[num10 + 1], triangles[num10 + 2])] = this.nodes[num11];
             view[new VInt2(triangles[num10 + 2], triangles[num10])]     = this.nodes[num11];
             num11++;
             num10 += 3;
         }
         ListLinqView <MeshNode> view2 = new ListLinqView <MeshNode>();
         List <uint>             list  = new List <uint>();
         int num12 = 0;
         int num13 = 0;
         int num14 = 0;
         while (num13 < triangles.Length)
         {
             view2.Clear();
             list.Clear();
             TriangleMeshNode node2 = this.nodes[num14];
             for (int num15 = 0; num15 < 3; num15++)
             {
                 TriangleMeshNode node3;
                 if (view.TryGetValue(new VInt2(triangles[num13 + ((num15 + 1) % 3)], triangles[num13 + num15]), out node3))
                 {
                     view2.Add(node3);
                     VInt3 num16 = node2.position - node3.position;
                     list.Add((uint)num16.costMagnitude);
                 }
             }
             node2.connections     = view2.ToArray();
             node2.connectionCosts = list.ToArray();
             num14++;
             num13 += 3;
         }
         if (num12 > 0)
         {
             Debug.LogError("One or more triangles are identical to other triangles, this is not a good thing to have in a navmesh\nIncreasing the scale of the mesh might help\nNumber of triangles with error: " + num12 + "\n");
         }
         RebuildBBTree(this);
     }
 }
示例#10
0
        public override void Prepare()
        {
            nnConstraint.tags = enabledTags;
            NNInfo startNNInfo = AstarPath.active.GetNearest(startPoint, nnConstraint, startHint);

            startNode = startNNInfo.node;

            if (startNode == null)
            {
                LogError("Could not find start node for multi target path");
                Error();
                return;
            }

            if (!startNode.Walkable)
            {
                LogError("Nearest node to the start point is not walkable");
                Error();
                return;
            }

            //Tell the NNConstraint which node was found as the start node if it is a PathNNConstraint and not a normal NNConstraint
            PathNNConstraint pathNNConstraint = nnConstraint as PathNNConstraint;

            if (pathNNConstraint != null)
            {
                pathNNConstraint.SetStart(startNNInfo.node);
            }

            vectorPaths     = new List <Vector3> [targetPoints.Length];
            nodePaths       = new List <GraphNode> [targetPoints.Length];
            targetNodes     = new GraphNode[targetPoints.Length];
            targetsFound    = new bool[targetPoints.Length];
            targetNodeCount = targetPoints.Length;

            bool anyWalkable = false;
            bool anySameArea = false;
            bool anyNotNull  = false;

            for (int i = 0; i < targetPoints.Length; i++)
            {
                NNInfo endNNInfo = AstarPath.active.GetNearest(targetPoints[i], nnConstraint);

                targetNodes[i] = endNNInfo.node;
                //Debug.DrawLine (targetPoints[i],targetNodes[i].position,Color.red);
                targetPoints[i] = endNNInfo.clampedPosition;
                if (targetNodes[i] != null)
                {
                    anyNotNull = true;
                    endNode    = targetNodes[i];
                }

                bool notReachable = false;

                if (endNNInfo.node != null && endNNInfo.node.Walkable)
                {
                    anyWalkable = true;
                }
                else
                {
                    notReachable = true;
                }

                if (endNNInfo.node != null && endNNInfo.node.Area == startNode.Area)
                {
                    anySameArea = true;
                }
                else
                {
                    notReachable = true;
                }

                if (notReachable)
                {
                    targetsFound[i] = true;                     //Signal that the pathfinder should not look for this node
                    targetNodeCount--;
                }
            }

            startPoint = startNNInfo.clampedPosition;

            startIntPoint = (Int3)startPoint;
            //hTarget = (Int3)endPoint;

#if ASTARDEBUG
            Debug.DrawLine(startNode.position, startPoint, Color.blue);
            //Debug.DrawLine (endNode.position,endPoint,Color.blue);
#endif

            if (startNode == null || !anyNotNull)
            {
                LogError("Couldn't find close nodes to either the start or the end (start = " + (startNode != null ? "found":"not found") + " end = " + (anyNotNull?"at least one found":"none found") + ")");
                Error();
                return;
            }

            if (!startNode.Walkable)
            {
                LogError("The node closest to the start point is not walkable");
                Error();
                return;
            }

            if (!anyWalkable)
            {
                LogError("No target nodes were walkable");
                Error();
                return;
            }

            if (!anySameArea)
            {
                LogError("There are no valid paths to the targets");
                Error();
                return;
            }

            //=== Calcuate hTarget ===

            if (pathsForAll)
            {
                if (heuristicMode == HeuristicMode.None)
                {
                    heuristic      = Heuristic.None;
                    heuristicScale = 0F;
                }
                else if (heuristicMode == HeuristicMode.Average || heuristicMode == HeuristicMode.MovingAverage)
                {
                    Vector3 avg = Vector3.zero;

                    for (int i = 0; i < targetNodes.Length; i++)
                    {
                        avg += (Vector3)targetNodes[i].position;
                    }
                    avg    /= targetNodes.Length;
                    hTarget = (Int3)avg;
                }
                else if (heuristicMode == HeuristicMode.Midpoint || heuristicMode == HeuristicMode.MovingMidpoint)
                {
                    Vector3 min = Vector3.zero;
                    Vector3 max = Vector3.zero;
                    bool    set = false;

                    for (int j = 0; j < targetPoints.Length; j++)
                    {
                        if (!targetsFound[j])
                        {
                            if (!set)
                            {
                                min = (Vector3)targetNodes[j].position;
                                max = (Vector3)targetNodes[j].position;
                                set = true;
                            }
                            else
                            {
                                min = Vector3.Min((Vector3)targetNodes[j].position, min);
                                max = Vector3.Max((Vector3)targetNodes[j].position, max);
                            }
                        }
                    }

                    Vector3 midpoint = (min + max) * 0.5F;
                    hTarget = (Int3)midpoint;
                }
                else if (heuristicMode == HeuristicMode.Sequential)
                {
                    float dist = 0;

                    for (int j = 0; j < targetNodes.Length; j++)
                    {
                        if (!targetsFound[j])
                        {
                            float d = (targetNodes[j].position - startNode.position).sqrMagnitude;
                            if (d > dist)
                            {
                                dist             = d;
                                hTarget          = (Int3)targetPoints[j];
                                sequentialTarget = j;
                            }
                        }
                    }
                }
            }
            else
            {
                heuristic      = Heuristic.None;
                heuristicScale = 0.0F;
            }
        }
示例#11
0
        bool FindNextCorners(Vector3 origin, int startIndex, List <Vector3> funnelPath, int numCorners, out bool lastCorner)
        {
            lastCorner = false;

            if (left == null)
            {
                throw new System.Exception("left list is null");
            }
            if (right == null)
            {
                throw new System.Exception("right list is null");
            }
            if (funnelPath == null)
            {
                throw new System.ArgumentNullException("funnelPath");
            }

            if (left.Count != right.Count)
            {
                throw new System.ArgumentException("left and right lists must have equal length");
            }

            int diagonalCount = left.Count;

            if (diagonalCount == 0)
            {
                throw new System.ArgumentException("no diagonals");
            }

            if (diagonalCount - startIndex < 3)
            {
                //Direct path
                funnelPath.Add(left[diagonalCount - 1]);
                lastCorner = true;
                return(true);
            }

                        #if ASTARDEBUG
            for (int i = startIndex; i < left.Count - 1; i++)
            {
                Debug.DrawLine(left[i], left[i + 1], Color.red);
                Debug.DrawLine(right[i], right[i + 1], Color.magenta);
                Debug.DrawRay(right[i], Vector3.up, Color.magenta);
            }
            for (int i = 0; i < left.Count; i++)
            {
                Debug.DrawLine(right[i], left[i], Color.cyan);
            }
                        #endif

            //Remove identical vertices
            while (left[startIndex + 1] == left[startIndex + 2] && right[startIndex + 1] == right[startIndex + 2])
            {
                //System.Console.WriteLine ("Removing identical left and right");
                //left.RemoveAt (1);
                //right.RemoveAt (1);
                startIndex++;

                if (diagonalCount - startIndex <= 3)
                {
                    return(false);
                }
            }

            Vector3 swPoint = left[startIndex + 2];
            if (swPoint == left[startIndex + 1])
            {
                swPoint = right[startIndex + 2];
            }


            //Test
            while (VectorMath.IsColinearXZ(origin, left[startIndex + 1], right[startIndex + 1]) || VectorMath.RightOrColinearXZ(left[startIndex + 1], right[startIndex + 1], swPoint) == VectorMath.RightOrColinearXZ(left[startIndex + 1], right[startIndex + 1], origin))
            {
        #if ASTARDEBUG
                Debug.DrawLine(left[startIndex + 1], right[startIndex + 1], new Color(0, 0, 0, 0.5F));
                Debug.DrawLine(origin, swPoint, new Color(0, 0, 0, 0.5F));
        #endif
                //left.RemoveAt (1);
                //right.RemoveAt (1);
                startIndex++;

                if (diagonalCount - startIndex < 3)
                {
                    //Debug.Log ("#2 " + left.Count + " - " + startIndex + " = " + (left.Count-startIndex));
                    //Direct path
                    funnelPath.Add(left[diagonalCount - 1]);
                    lastCorner = true;
                    return(true);
                }

                swPoint = left[startIndex + 2];
                if (swPoint == left[startIndex + 1])
                {
                    swPoint = right[startIndex + 2];
                }
            }


            //funnelPath.Add (origin);

            Vector3 portalApex  = origin;
            Vector3 portalLeft  = left[startIndex + 1];
            Vector3 portalRight = right[startIndex + 1];

            int apexIndex  = startIndex + 0;
            int rightIndex = startIndex + 1;
            int leftIndex  = startIndex + 1;

            for (int i = startIndex + 2; i < diagonalCount; i++)
            {
                if (funnelPath.Count >= numCorners)
                {
                    return(true);
                }

                if (funnelPath.Count > 2000)
                {
                    Debug.LogWarning("Avoiding infinite loop. Remove this check if you have this long paths.");
                    break;
                }

                Vector3 pLeft  = left[i];
                Vector3 pRight = right[i];

                /*Debug.DrawLine (portalApex,portalLeft,Color.red);
                 * Debug.DrawLine (portalApex,portalRight,Color.yellow);
                 * Debug.DrawLine (portalApex,left,Color.cyan);
                 * Debug.DrawLine (portalApex,right,Color.cyan);*/

                if (VectorMath.SignedTriangleAreaTimes2XZ(portalApex, portalRight, pRight) >= 0)
                {
                    if (portalApex == portalRight || VectorMath.SignedTriangleAreaTimes2XZ(portalApex, portalLeft, pRight) <= 0)
                    {
                        portalRight = pRight;
                        rightIndex  = i;
                    }
                    else
                    {
                        funnelPath.Add(portalLeft);
                        portalApex = portalLeft;
                        apexIndex  = leftIndex;

                        portalLeft  = portalApex;
                        portalRight = portalApex;

                        leftIndex  = apexIndex;
                        rightIndex = apexIndex;

                        i = apexIndex;

                        continue;
                    }
                }

                if (VectorMath.SignedTriangleAreaTimes2XZ(portalApex, portalLeft, pLeft) <= 0)
                {
                    if (portalApex == portalLeft || VectorMath.SignedTriangleAreaTimes2XZ(portalApex, portalRight, pLeft) >= 0)
                    {
                        portalLeft = pLeft;
                        leftIndex  = i;
                    }
                    else
                    {
                        funnelPath.Add(portalRight);
                        portalApex = portalRight;
                        apexIndex  = rightIndex;

                        portalLeft  = portalApex;
                        portalRight = portalApex;

                        leftIndex  = apexIndex;
                        rightIndex = apexIndex;

                        i = apexIndex;

                        continue;
                    }
                }
            }

            lastCorner = true;
            funnelPath.Add(left[diagonalCount - 1]);

            return(true);
        }