/// <summary> /// Trains a Markov model on a the training set of passwords, then evolves it against the target password database /// specified in the config file. At the end of the evolution, the champion model is evaluated for a larger number /// of guesses. /// </summary> /// <param name="trainingSetFile">The file containing the passwords from which to build the initial Markov model.</param> /// <param name="seedFile">The file to which the initial Markov model will be saved.</param> /// <param name="configFile">The file containing all the configuration parameters of the evolution.</param> /// <param name="resultsFile">The file to which the results will be saved at each generation.</param> /// <param name="validateSeed">If true, the seed model will first be validated against a large number of guesses.</param> //private static void RunExperiment(string trainingSetFile, string seedFile, string configFile, string resultsFile, bool validateSeed = false) private static void RunExperiment(string configFile, bool validateSeed = false) { Console.Write("Building Markov model..."); // Load the XML configuration file XmlDocument xmlConfig = new XmlDocument(); xmlConfig.Load(configFile); XmlElement xmlConfigElement = xmlConfig.DocumentElement; // Set Training File string trainingSetFile = XmlUtils.GetValueAsString(xmlConfigElement, "TrainingFile"); // Create seedFile string seedFile = XmlUtils.GetValueAsString(xmlConfigElement, "SeedFile"); // Create results file. string resultsFile = XmlUtils.GetValueAsString(xmlConfigElement, "ResultsFile"); Console.WriteLine("\nTraining File: {0}\nSeed File: {1}\nResults File: {2}", trainingSetFile, seedFile, resultsFile); // Load the training set passwords from file var passwords = PasswordUtil.LoadPasswords(trainingSetFile, 8); // Create a Markov model from the passwords. This model will be used // as our seed for the evolution. int outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, passwords); // Free up the memory used by the passwords passwords = null; Console.WriteLine("Done! Outputs: {0}", outputs); _experiment = new PasswordEvolutionExperiment(); _experiment.OutputCount = outputs; // Initialize the experiment with the specifications in the config file. _experiment.Initialize("PasswordEvolution", xmlConfig.DocumentElement); // Set the passwords to be used by the fitness evaluator. // These are the passwords our models will try to guess. // PasswordsWithAccounts is the file used for validation. Its account values won't be changed. PasswordCrackingEvaluator.Passwords = _experiment.Passwords; PasswordCrackingEvaluator.PasswordsWithAccounts = new Dictionary<string,double>(_experiment.Passwords); // Makes a deep copy Console.WriteLine("Loading seed..."); // Load the seed model that we created at the start of this function var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0]; // Validates the seed model by running it for a large number of guesses if (validateSeed) { Console.WriteLine("Validating seed model..."); var seedModel = _experiment.CreateGenomeDecoder().Decode(seed); ValidateModel(seedModel, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); _ea = _experiment.CreateEvolutionAlgorithm(seed); // Attach an update event handler. This will be called at the end of every generation // to log the progress of the evolution (see function logEvolutionProgress below). _ea.UpdateEvent += new EventHandler(logEvolutionProgress); //_ea.UpdateScheme = new UpdateScheme(1);//.UpdateMode. // Setup results file using (TextWriter writer = new StreamWriter(resultsFile)) writer.WriteLine("Generation,Champion Accounts,Champion Uniques,Average Accounts,Average Uniques,Total Accounts,Total Uniques"); _generationalResultsFile = resultsFile; // Start algorithm (it will run on a background thread). Console.WriteLine("Starting evolution. Pop size: {0} Guesses: {1}", _experiment.DefaultPopulationSize, _experiment.GuessesPerIndividual); _ea.StartContinue(); // Wait until the evolution is finished. while (_ea.RunState == RunState.Running) { Thread.Sleep(1000); } // Validate the resulting model. var decoder = _experiment.CreateGenomeDecoder(); var champ = decoder.Decode(_ea.CurrentChampGenome); ValidateModel(champ, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); }
/// <summary> /// Trains a Markov model on a the training set of passwords, then evolves it against the target password database /// specified in the config file. At the end of the evolution, the champion model is evaluated for a larger number /// of guesses. /// </summary> /// <param name="trainingSetFile">The file containing the passwords from which to build the initial Markov model.</param> /// <param name="seedFile">The file to which the initial Markov model will be saved.</param> /// <param name="configFile">The file containing all the configuration parameters of the evolution.</param> /// <param name="resultsFile">The file to which the results will be saved at each generation.</param> /// <param name="validateSeed">If true, the seed model will first be validated against a large number of guesses.</param> //private static void RunExperiment(string trainingSetFile, string seedFile, string configFile, string resultsFile, bool validateSeed = false) private static void RunExperiment(string configFile, bool validateSeed = false) { Console.Write("Building Markov model..."); // Load the XML configuration file XmlDocument xmlConfig = new XmlDocument(); xmlConfig.Load(configFile); XmlElement xmlConfigElement = xmlConfig.DocumentElement; // Set Training File string trainingSetFile = XmlUtils.GetValueAsString(xmlConfigElement, "TrainingFile"); // Create seedFile string seedFile = XmlUtils.GetValueAsString(xmlConfigElement, "SeedFile"); // Create results file. string resultsFile = XmlUtils.GetValueAsString(xmlConfigElement, "ResultsFile"); Console.WriteLine("\nTraining File: {0}\nSeed File: {1}\nResults File: {2}", trainingSetFile, seedFile, resultsFile); // Load the training set passwords from file var passwords = PasswordUtil.LoadPasswords(trainingSetFile, 8); // Create a Markov model from the passwords. This model will be used // as our seed for the evolution. int outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, passwords); // Free up the memory used by the passwords passwords = null; Console.WriteLine("Done! Outputs: {0}", outputs); _experiment = new PasswordEvolutionExperiment(); _experiment.OutputCount = outputs; // Initialize the experiment with the specifications in the config file. _experiment.Initialize("PasswordEvolution", xmlConfig.DocumentElement); // Set the passwords to be used by the fitness evaluator. // These are the passwords our models will try to guess. // PasswordsWithAccounts is the file used for validation. Its account values won't be changed. PasswordCrackingEvaluator.Passwords = _experiment.Passwords; PasswordCrackingEvaluator.PasswordsWithAccounts = new Dictionary <string, double>(_experiment.Passwords); // Makes a deep copy Console.WriteLine("Loading seed..."); // Load the seed model that we created at the start of this function var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0]; // Validates the seed model by running it for a large number of guesses if (validateSeed) { Console.WriteLine("Validating seed model..."); var seedModel = _experiment.CreateGenomeDecoder().Decode(seed); ValidateModel(seedModel, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); _ea = _experiment.CreateEvolutionAlgorithm(seed); // Attach an update event handler. This will be called at the end of every generation // to log the progress of the evolution (see function logEvolutionProgress below). _ea.UpdateEvent += new EventHandler(logEvolutionProgress); //_ea.UpdateScheme = new UpdateScheme(1);//.UpdateMode. // Setup results file using (TextWriter writer = new StreamWriter(resultsFile)) writer.WriteLine("Generation,Champion Accounts,Champion Uniques,Average Accounts,Average Uniques,Total Accounts,Total Uniques"); _generationalResultsFile = resultsFile; // Start algorithm (it will run on a background thread). Console.WriteLine("Starting evolution. Pop size: {0} Guesses: {1}", _experiment.DefaultPopulationSize, _experiment.GuessesPerIndividual); _ea.StartContinue(); // Wait until the evolution is finished. while (_ea.RunState == RunState.Running) { Thread.Sleep(1000); } // Validate the resulting model. var decoder = _experiment.CreateGenomeDecoder(); var champ = decoder.Decode(_ea.CurrentChampGenome); ValidateModel(champ, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); }
/// <summary> /// Trains a Markov model on a the training set of passwords, then evolves it against the target password database /// specified in the config file. At the end of the evolution, the champion model is evaluated for a larger number /// of guesses. /// </summary> /// <param name="trainingSetFile">The file containing the passwords from which to build the initial Markov model.</param> /// <param name="seedFile">The file to which the initial Markov model will be saved.</param> /// <param name="configFile">The file containing all the configuration parameters of the evolution.</param> /// <param name="resultsFile">The file to which the results will be saved at each generation.</param> /// <param name="validateSeed">If true, the seed model will first be validated against a large number of guesses.</param> //private static void RunExperiment(string trainingSetFile, string seedFile, string configFile, string resultsFile, bool validateSeed = false) private static void RunExperiment(string configFile, bool validateSeed = false) { Console.WriteLine("Removing previous champions..."); string[] oldChampionFiles = Directory.GetFiles(@"../../../experiments/champions/", "*.xml"); foreach (string oldChampion in oldChampionFiles) File.Delete(oldChampion); Console.Write("Building Markov model..."); // Load the XML configuration file XmlDocument xmlConfig = new XmlDocument(); xmlConfig.Load(configFile); XmlElement xmlConfigElement = xmlConfig.DocumentElement; // Set Training File string trainingSetFile = XmlUtils.GetValueAsString(xmlConfigElement, "TrainingFile"); // Create seedFile string seedFile = XmlUtils.GetValueAsString(xmlConfigElement, "SeedFile"); // Create results file. string resultsFile = XmlUtils.GetValueAsString(xmlConfigElement, "ResultsFile"); Console.WriteLine(); Console.WriteLine("Training File: {0}", trainingSetFile); Console.WriteLine("Seed File: {0}", seedFile); Console.WriteLine("Results File: {0}", resultsFile); // Load the training set passwords from file var passwords = PasswordUtil.LoadPasswords(trainingSetFile, 8); // Create a Markov model from the passwords. This model will be used // as our seed for the evolution. int outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, passwords); // Free up the memory used by the passwords passwords = null; Console.WriteLine("Done! Outputs: {0}", outputs); _experiment = new PasswordEvolutionExperiment(); _experiment.OutputCount = outputs; // Initialize the experiment with the specifications in the config file. _experiment.Initialize("PasswordEvolution", xmlConfig.DocumentElement); // Set the passwords to be used by the fitness evaluator. // These are the passwords our models will try to guess. // PasswordsWithAccounts is the file used for validation. Its account values won't be changed. PasswordCrackingEvaluator.Passwords = _experiment.Passwords; Console.WriteLine("Loading seed..."); // Load the seed model that we created at the start of this function var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0]; // Validates the seed model by running it for a large number of guesses if (validateSeed) { Console.WriteLine("Validating seed model..."); var seedModel = _experiment.CreateGenomeDecoder().Decode(seed); ValidateModel(seedModel, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); _ea = _experiment.CreateEvolutionAlgorithm(seed); // Attach an update event handler. This will be called at the end of every generation // to log the progress of the evolution (see function logEvolutionProgress below). _ea.UpdateEvent += new EventHandler(logEvolutionProgress); //_ea.UpdateScheme = new UpdateScheme(1);//.UpdateMode. // Setup results file using (TextWriter writer = new StreamWriter(resultsFile)) writer.WriteLine("Generation,Champion Accounts,Champion Uniques,Average Accounts,Average Uniques,Total Accounts,Total Uniques"); _generationalResultsFile = resultsFile; // Start algorithm (it will run on a background thread). Console.WriteLine("Starting evolution. Pop size: {0} Guesses: {1}", _experiment.DefaultPopulationSize, _experiment.GuessesPerIndividual); _ea.StartContinue(); // Wait until the evolution is finished. while (_ea.RunState == RunState.Running) { Thread.Sleep(1000); } if (VALIDATE_ALL_STAR) { // Validate the champions of each generation. List<MarkovChain> championModels = new List<MarkovChain>(); string[] championFiles = Directory.GetFiles(@"../../../experiments/champions/", "*.xml"); foreach (string championFile in championFiles) { var currentChamp = _experiment.LoadPopulation(XmlReader.Create(championFile))[0]; var champModel = _experiment.CreateGenomeDecoder().Decode(currentChamp); championModels.Add(champModel); } ValidateForest(championModels, _experiment.Passwords, VALIDATION_GUESSES/championFiles.Length, _experiment.Hashed); // Validate a population made up of copies of the final champion. /* List<MarkovChain> championCopyPop = new List<MarkovChain>(); Console.WriteLine(); Console.WriteLine("Validating the final champion population"); for (int i = 0; i < MAX_GENERATIONS; i++) { var decoder = _experiment.CreateGenomeDecoder(); var champ = decoder.Decode(_ea.CurrentChampGenome); championCopyPop.Add(champ); } ValidateAllstarTeam(championCopyPop, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); */ } else { // Validate the resulting model. var decoder = _experiment.CreateGenomeDecoder(); var champ = decoder.Decode(_ea.CurrentChampGenome); ValidateModel(champ, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } }
private static void RunExperiment() { // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); Console.Write("Building Markov model..."); // Load the XML configuration file XmlDocument xmlConfig = new XmlDocument(); xmlConfig.Load(cp.ConfigFile); // Set Training File string trainingSetFile = cp.TrainingDb; // Create seedFile string seedFile = cp.SeedFile; // Create results file. string resultsFile = cp.ResultsFile; Console.WriteLine(); Console.WriteLine("Training File: {0}", trainingSetFile); Console.WriteLine("Seed File: {0}", seedFile); Console.WriteLine("Results File: {0}", resultsFile); // Load the training set passwords from file var passwords = PasswordUtil.LoadPasswords(trainingSetFile, cp.PasswordLength); // Create a Markov model from the passwords. This model will be used // as our seed for the evolution. int outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, passwords); // Free up the memory used by the passwords passwords = null; Console.WriteLine("Done! Outputs: {0}", outputs); _experiment = new PasswordEvolutionExperiment(); _experiment.OutputCount = outputs; // Initialize the experiment with the specifications in the config file. _experiment.Initialize("PasswordEvolution", xmlConfig.DocumentElement); //cmd arguments if(cp.EvolutionDb != null) { Console.WriteLine("Using command-line password file for evolution: {0}", cp.EvolutionDb); Console.WriteLine("Password length: {0}", cp.PasswordLength); PasswordCrackingEvaluator.Passwords = PasswordUtil.LoadPasswords(cp.EvolutionDb, cp.PasswordLength); Console.WriteLine("PasswordCrackingEvaluator.Passwords = {0}", PasswordCrackingEvaluator.Passwords == null ? "NULL" : "NOT NULL"); } else { // Set the passwords to be used by the fitness evaluator. // These are the passwords our models will try to guess. PasswordCrackingEvaluator.Passwords = _experiment.Passwords; Console.WriteLine("Using config file passwords for evolution."); } Accounts = PasswordCrackingEvaluator.Passwords; Console.WriteLine("Loading seed..."); // Load the seed model that we created at the start of this function var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0]; // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); ce = new CondorEvaluator(cp.ExperimentDir, cp.ConfigFile, cp.ResultsFile, CondorGroup.Grad, outputs, PasswordCrackingEvaluator.Passwords, cp.PasswordLength); _ea = _experiment.CreateEvolutionAlgorithm(seed, ce); // Attach an update event handler. This will be called at the end of every generation // to log the progress of the evolution (see function logEvolutionProgress below). _ea.UpdateScheme = new UpdateScheme(1); _ea.UpdateEvent += new EventHandler(logEvolutionProgress); // Setup results file using (TextWriter writer = new StreamWriter(resultsFile)) writer.WriteLine("Generation,Champion Accounts,Champion Uniques,Average Accounts,Average Uniques,Total Accounts,Total Uniques"); //_generationalResultsFile = resultsFile; // Start algorithm (it will run on a background thread). Console.WriteLine("Starting evolution. Pop size: {0} Guesses: {1}", _experiment.DefaultPopulationSize, _experiment.GuessesPerIndividual); _ea.StartContinue(); // Wait until the evolution is finished. while (_ea.RunState == RunState.Running) { Thread.Sleep(1000); } }
/// <summary> /// Trains a Markov model on a the training set of passwords, then evolves it against the target password database /// specified in the config file. At the end of the evolution, the champion model is evaluated for a larger number /// of guesses. /// </summary> /// <param name="trainingSetFile">The file containing the passwords from which to build the initial Markov model.</param> /// <param name="seedFile">The file to which the initial Markov model will be saved.</param> /// <param name="configFile">The file containing all the configuration parameters of the evolution.</param> /// <param name="resultsFile">The file to which the results will be saved at each generation.</param> /// <param name="validateSeed">If true, the seed model will first be validated against a large number of guesses.</param> //private static void RunExperiment(string trainingSetFile, string seedFile, string configFile, string resultsFile, bool validateSeed = false) private static void RunExperiment(string configFile, bool validateSeed = false) { Console.WriteLine("Removing previous champions..."); string[] oldChampionFiles = Directory.GetFiles(@"../../../experiments/champions/", "*.xml"); foreach (string oldChampion in oldChampionFiles) { File.Delete(oldChampion); } Console.Write("Building Markov model..."); // Load the XML configuration file XmlDocument xmlConfig = new XmlDocument(); xmlConfig.Load(configFile); XmlElement xmlConfigElement = xmlConfig.DocumentElement; // Set Training File string trainingSetFile = XmlUtils.GetValueAsString(xmlConfigElement, "TrainingFile"); // Create seedFile string seedFile = XmlUtils.GetValueAsString(xmlConfigElement, "SeedFile"); // Create results file. string resultsFile = XmlUtils.GetValueAsString(xmlConfigElement, "ResultsFile"); Console.WriteLine(); Console.WriteLine("Training File: {0}", trainingSetFile); Console.WriteLine("Seed File: {0}", seedFile); Console.WriteLine("Results File: {0}", resultsFile); // Load the training set passwords from file var passwords = PasswordUtil.LoadPasswords(trainingSetFile, 8); // Create a Markov model from the passwords. This model will be used // as our seed for the evolution. int outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, passwords); // Free up the memory used by the passwords passwords = null; Console.WriteLine("Done! Outputs: {0}", outputs); _experiment = new PasswordEvolutionExperiment(); _experiment.OutputCount = outputs; // Initialize the experiment with the specifications in the config file. _experiment.Initialize("PasswordEvolution", xmlConfig.DocumentElement); // Set the passwords to be used by the fitness evaluator. // These are the passwords our models will try to guess. // PasswordsWithAccounts is the file used for validation. Its account values won't be changed. PasswordCrackingEvaluator.Passwords = _experiment.Passwords; Console.WriteLine("Loading seed..."); // Load the seed model that we created at the start of this function var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0]; // Validates the seed model by running it for a large number of guesses if (validateSeed) { Console.WriteLine("Validating seed model..."); var seedModel = _experiment.CreateGenomeDecoder().Decode(seed); ValidateModel(seedModel, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } // Create evolution algorithm using the seed model to initialize the population Console.WriteLine("Creating population..."); _ea = _experiment.CreateEvolutionAlgorithm(seed); // Attach an update event handler. This will be called at the end of every generation // to log the progress of the evolution (see function logEvolutionProgress below). _ea.UpdateEvent += new EventHandler(logEvolutionProgress); //_ea.UpdateScheme = new UpdateScheme(1);//.UpdateMode. // Setup results file using (TextWriter writer = new StreamWriter(resultsFile)) writer.WriteLine("Generation,Champion Accounts,Champion Uniques,Average Accounts,Average Uniques,Total Accounts,Total Uniques"); _generationalResultsFile = resultsFile; // Start algorithm (it will run on a background thread). Console.WriteLine("Starting evolution. Pop size: {0} Guesses: {1}", _experiment.DefaultPopulationSize, _experiment.GuessesPerIndividual); _ea.StartContinue(); // Wait until the evolution is finished. while (_ea.RunState == RunState.Running) { Thread.Sleep(1000); } if (VALIDATE_ALL_STAR) { // Validate the champions of each generation. List <MarkovChain> championModels = new List <MarkovChain>(); string[] championFiles = Directory.GetFiles(@"../../../experiments/champions/", "*.xml"); foreach (string championFile in championFiles) { var currentChamp = _experiment.LoadPopulation(XmlReader.Create(championFile))[0]; var champModel = _experiment.CreateGenomeDecoder().Decode(currentChamp); championModels.Add(champModel); } ValidateForest(championModels, _experiment.Passwords, VALIDATION_GUESSES / championFiles.Length, _experiment.Hashed); // Validate a population made up of copies of the final champion. /* List<MarkovChain> championCopyPop = new List<MarkovChain>(); * * Console.WriteLine(); * Console.WriteLine("Validating the final champion population"); * for (int i = 0; i < MAX_GENERATIONS; i++) * { * var decoder = _experiment.CreateGenomeDecoder(); * var champ = decoder.Decode(_ea.CurrentChampGenome); * championCopyPop.Add(champ); * } * ValidateAllstarTeam(championCopyPop, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); */ } else { // Validate the resulting model. var decoder = _experiment.CreateGenomeDecoder(); var champ = decoder.Decode(_ea.CurrentChampGenome); ValidateModel(champ, _experiment.Passwords, VALIDATION_GUESSES, _experiment.Hashed); } }