示例#1
0
        static void ValidateModel(MarkovChain model, Dictionary <string, double> passwords, int guesses, bool hashed) //passwords here is not used...
        {
            Console.Write("Validating on {0} guesses... ", guesses);
            PasswordCrackingEvaluator eval = new PasswordCrackingEvaluator(guesses, hashed);
            var results = eval.Validate(model);

            Console.WriteLine("Accounts: {0} Uniques: {1}", results._fitness, results._alternativeFitness);
        }
示例#2
0
        static void ValidateForest(List <MarkovChain> models, Dictionary <string, PasswordInfo> passwords, int guesses, bool hashed) //passwords here is not used...
        {
            Console.WriteLine("Number of champion models: {0}", models.Count);
            Console.WriteLine("Validating All-Star Team on {0} guesses each...", guesses);
            PasswordCrackingEvaluator eval = new PasswordCrackingEvaluator(guesses, hashed);

            eval.ValidatePopulation(models);
            double accounts = eval.FoundValidationPasswords.Sum(s => PasswordCrackingEvaluator.Passwords[s].Accounts);
            double uniques  = eval.FoundValidationPasswords.Count;

            Console.WriteLine("Accounts: {0} Uniques: {1}", accounts, uniques);
        }
        public NeatEvolutionAlgorithm <NeatGenome> CreateEvolutionAlgorithm(IGenomeFactory <NeatGenome> genomeFactory, List <NeatGenome> genomeList, IGenomeListEvaluator <NeatGenome> eval = null)
        {
            // Create distance metric. Mismatched genes have a fixed distance of 10; for matched genes the distance is their weigth difference.
            IDistanceMetric distanceMetric = new ManhattanDistanceMetric(1.0, 0.0, 10.0);
            ISpeciationStrategy <NeatGenome> speciationStrategy = new ParallelKMeansClusteringStrategy <NeatGenome>(distanceMetric, _parallelOptions);

            // Create complexity regulation strategy.
            IComplexityRegulationStrategy complexityRegulationStrategy = new NullComplexityRegulationStrategy();// ExperimentUtils.CreateComplexityRegulationStrategy(_complexityRegulationStr, _complexityThreshold);

            // Create the evolution algorithm.
            NeatEvolutionAlgorithm <NeatGenome> ea = new NeatEvolutionAlgorithm <NeatGenome>(_eaParams, speciationStrategy, complexityRegulationStrategy);

            // Create the MC evaluator
            PasswordCrackingEvaluator.Passwords = _passwords;

            // Create genome decoder.
            IGenomeDecoder <NeatGenome, MarkovChain> genomeDecoder = CreateGenomeDecoder();

            // If we're running specially on Condor, skip this
            if (eval == null)
            {
                _evaluator = new PasswordCrackingEvaluator(_guesses, Hashed);

                // Create a genome list evaluator. This packages up the genome decoder with the genome evaluator.
                //    IGenomeListEvaluator<NeatGenome> innerEvaluator = new ParallelGenomeListEvaluator<NeatGenome, MarkovChain>(genomeDecoder, _evaluator, _parallelOptions);
                IGenomeListEvaluator <NeatGenome> innerEvaluator = new ParallelNEATGenomeListEvaluator <NeatGenome, MarkovChain>(genomeDecoder, _evaluator, this);

                /*
                 * // Wrap the list evaluator in a 'selective' evaulator that will only evaluate new genomes. That is, we skip re-evaluating any genomes
                 * // that were in the population in previous generations (elite genomes). This is determiend by examining each genome's evaluation info object.
                 * IGenomeListEvaluator<NeatGenome> selectiveEvaluator = new SelectiveGenomeListEvaluator<NeatGenome>(
                 *                                                                      innerEvaluator,
                 *                                                                      SelectiveGenomeListEvaluator<NeatGenome>.CreatePredicate_OnceOnly());
                 */


                // Initialize the evolution algorithm.
                ea.Initialize(innerEvaluator, genomeFactory, genomeList);
            }
            else
            {
                // Initialize the evolution algorithm.
                ea.Initialize(eval, genomeFactory, genomeList);
            }



            // Finished. Return the evolution algorithm
            return(ea);
        }
 /// <summary>
 /// Construct with the provided IGenomeDecoder, IPhenomeEvaluator, ParalleOptions and enablePhenomeCaching flag.
 /// </summary>
 public SerialGenomeListEvaluator(IGenomeDecoder <NeatGenome, MarkovChain> genomeDecoder,
                                  PasswordCrackingEvaluator passwordCrackingEvaluator, bool hashed = false)
 {
     _genomeDecoder             = genomeDecoder;
     _passwordCrackingEvaluator = passwordCrackingEvaluator;
 }
 /// <summary>
 /// Construct with the provided IGenomeDecoder and IPhenomeEvaluator.
 /// Phenome caching is enabled by default.
 /// The number of parallel threads defaults to Environment.ProcessorCount.
 /// </summary>
 public SerialGenomeListEvaluator(IGenomeDecoder <NeatGenome, MarkovChain> genomeDecoder,
                                  PasswordCrackingEvaluator passwordCrackingEvaluator)
     : this(genomeDecoder, passwordCrackingEvaluator, true)
 {
 }
示例#6
0
        // Runs a comparison of the two model types.
        static void RunAllMarkovModelPairs(object special)
        {
            const string EXPERIMENT_OFFSET = @"..\..\..\experiments\intermediate\";

            string[] models = new string[]
            {
                "first-order",
                "8-layer"
            };

            // For every dataset, create a model
            for (int i = 0; i < _datasetFilenames.Length; i++)
            {
                if (i != (int)special)
                {
                    continue;
                }
                for (int m = 0; m < 2; m++)
                {
                    int    outputs;
                    string seedFile = EXPERIMENT_OFFSET + "seed-" + models[m] + "-" + _datasetFilenames[i].Name + ".xml";
                    Console.Write("Building {0} Markov model...", models[m]);
                    if (m == 0)
                    {
                        outputs = MarkovFilterCreator.GenerateFirstOrderMarkovFilter(seedFile, _passwords[i]);
                    }
                    else
                    {
                        outputs = MarkovFilterCreator.GenerateLayeredMarkovFilter(seedFile, _passwords[i], 8);
                    }

                    Console.WriteLine("Done! Outputs: {0}", outputs);
                    _experiment.OutputCount = outputs;

                    Console.WriteLine("Loading seed...");
                    var seed = _experiment.LoadPopulation(XmlReader.Create(seedFile))[0];

                    Console.WriteLine("Creating model...");
                    var model = _experiment.CreateGenomeDecoder().Decode(seed);

                    // For every dataset, test the model
                    for (int j = 0; j < _datasetFilenames.Length; j++)
                    {
                        Console.Write("Validating {0} {1} model on {2} with {3} guesses... ", models[m], _datasetFilenames[i].Name, _datasetFilenames[j].Name, VALIDATION_GUESSES);
                        PasswordCrackingEvaluator eval = new PasswordCrackingEvaluator(VALIDATION_GUESSES, false);
                        var results = eval.Validate(model, _passwords[j], EXPERIMENT_OFFSET + models[m] + "-" + _datasetFilenames[i].Name + "-" + _datasetFilenames[j].Name + ".csv", 10000);
                        // Console.WriteLine("Accounts: {0} Uniques: {1}", results._fitness, results._alternativeFitness);
                        Console.WriteLine("Total Score: {0} Uniques: {1}", results._fitness, results._alternativeFitness);

                        lock (_writerLock)
                            using (TextWriter writer = new StreamWriter(@"..\..\..\experiments\summary_results.csv", true))
                                writer.WriteLine("{0},{1},{2},{3},{4}%,{5}%",
                                                 _datasetFilenames[i].Name,
                                                 _datasetFilenames[j].Name,
                                                 results._fitness,
                                                 results._alternativeFitness,
                                                 results._fitness / (double)_passwords[j].Sum(kv => kv.Value) * 100,
                                                 results._alternativeFitness / (double)_passwords[j].Count * 100);
                    }
                }
            }
        }
示例#7
0
        //static IGenomeDecoder<NeatGenome, MarkovChain> _genomeDecoder;
        //static PasswordCrackingEvaluator _passwordCrackingEvaluator;



        public static void Evaluate(IGenomeDecoder <NeatGenome, MarkovChain> genomeDecoder, PasswordCrackingEvaluator passwordCrackingEvaluator, PasswordEvolutionExperiment experiment)
        {
            string[] genomeFiles = Directory.GetFiles(@"..\..\..\experiments\genomes\", "*.xml");

            XmlDocument doc = new XmlDocument();
            int         genomeNumber;


            foreach (string genomeFile in genomeFiles)
            {
                // Read in genome
                doc.Load(genomeFile);

                //NeatGenome genome = NeatGenomeXmlIO.LoadGenome(doc, false);
                //NeatGenomeFactory genomeFactory = (NeatGenomeFactory)CreateGenomeFactory();

                NeatGenome  genome  = experiment.LoadPopulation(XmlReader.Create(genomeFile))[0];
                MarkovChain phenome = experiment.CreateGenomeDecoder().Decode(genome);//genomeDecoder.Decode(genome);

                string[] filePath = genomeFile.Split('\\');
                string[] fileName = (filePath[filePath.Length - 1]).Split('-');


                String fileNumber = (fileName[1]).Split('.')[0];

                genomeNumber = Convert.ToInt32(fileNumber);


                //FileStream fs = File.Open(@"..\..\..\experiments\genomes\genome-results\genome-"+genomeNumber+"-results.txt", FileMode.CreateNew, FileAccess.Write);
                TextWriter tw = new StreamWriter(@"..\..\..\experiments\genomes\genome-results\genome-" + genomeNumber + "-results.txt");

                // Evaluate
                if (null == phenome)
                {   // Non-viable genome.
                    tw.WriteLine("0.0 0.0");
                }
                else
                {
                    FitnessInfo fitnessInfo = passwordCrackingEvaluator.Evaluate(phenome);
                    double      val         = fitnessInfo._fitness;
                    double      val2        = fitnessInfo._alternativeFitness;
                    tw.WriteLine(fitnessInfo._fitness + " " + fitnessInfo._alternativeFitness);
                }
                tw.Close();
                File.Create(@"..\..\..\experiments\genomes\genome-finished\genome-" + genomeNumber + "-finished.txt");
            }

            // Write results?? -> genome_#_results
            // Write finished flag -> genome_#_finished
        }
 /// <summary>
 /// Construct with the provided IGenomeDecoder and IPhenomeEvaluator.
 /// Phenome caching is enabled by default.
 /// The number of parallel threads defaults to Environment.ProcessorCount.
 /// </summary>
 public ParallelNEATGenomeListEvaluator(IGenomeDecoder <NeatGenome, MarkovChain> genomeDecoder,
                                        PasswordCrackingEvaluator passwordCrackingEvaluator, PasswordEvolutionExperiment experiment)
     : this(genomeDecoder, passwordCrackingEvaluator, true)
 {
     this.experiment = experiment;
 }