示例#1
0
        private void CrossOverParents(CandidateSolution parent1, CandidateSolution parent2, out CandidateSolution child1, out CandidateSolution child2)
        {
            child1 = parent1.DeepClone();
            child2 = parent2.DeepClone();

            //use exact copies or do crossover
            if (Randomizer.GetDoubleFromZeroToOne() < crossoverRate)
            {
                int numItems       = parent1.Meals.Count;
                int crossoverPoint = Randomizer.IntLessThan(numItems);

                for (int i = 0; i < crossoverPoint; i++)
                {
                    child1.SetSelected(i, parent1.IsSelected(i));
                    child2.SetSelected(i, parent2.IsSelected(i));
                }
                for (int i = crossoverPoint; i < numItems; i++)
                {
                    child1.SetSelected(i, parent2.IsSelected(i));
                    child2.SetSelected(i, parent1.IsSelected(i));
                }
            }
        }
示例#2
0
        public MealCollection FindOptimalItems(MealCollection meals, NutritionConstraints constraints)
        {
            currentGeneration = new List <CandidateSolution>(populationSize);
            for (int i = 0; i < populationSize; i++)
            {
                currentGeneration.Add(new CandidateSolution(meals, constraints));
            }

            generationNumber = 1;


            //main loop
            while (true)
            {
                float             bestFitnessScoreThisGeneration = System.Int32.MaxValue;
                CandidateSolution bestSolutionThisGeneration     = null;

                foreach (var candidate in currentGeneration)
                {
                    candidate.Repair();
                    float fitness = candidate.Fitness;

                    //sum up fitness scores for the roulette wheel selection
                    totalFitnessThisGeneration        += fitness;
                    totalInverseFitnessThisGeneration += 1 / (double)fitness;

                    if (fitness < bestFitnessScoreThisGeneration)
                    {
                        bestFitnessScoreThisGeneration = fitness;
                        bestSolutionThisGeneration     = candidate;
                    }
                }


                Debug.WriteLine("Iteration count {0}, best fitness: {1}", generationNumber, bestFitnessScoreAllTime);
                //compare this generation's best to to the best we had so far
                if (bestFitnessScoreThisGeneration < bestFitnessScoreAllTime)
                {
                    //save the best score
                    bestFitnessScoreAllTime = bestFitnessScoreThisGeneration;

                    //and save possible solution
                    bestSolution = bestSolutionThisGeneration.DeepClone();
                    bestSolutionGenerationNumber = generationNumber;
                }
                else
                {
                    if ((generationNumber - bestSolutionGenerationNumber) > MaxGenerationsWithNoChange)
                    {
                        break;
                    }
                }

                List <CandidateSolution> nextGeneration = new List <CandidateSolution>();
                while (nextGeneration.Count < populationSize)
                {
                    //Select two parents(the lower the fitness, the higher the chance of selection)
                    var parent1 = SelectCandidate();
                    var parent2 = SelectCandidate();

                    //cross them over to generate two new children
                    CandidateSolution child1, child2;
                    CrossOverParents(parent1, parent2, out child1, out child2);

                    //appy mutation if needed
                    child1.AddPossibleMutation(mutationRate);
                    child2.AddPossibleMutation(mutationRate);

                    //add them to next generation
                    nextGeneration.Add(child1);
                    nextGeneration.Add(child2);
                }

                currentGeneration = nextGeneration;
                generationNumber++;
            }

            return(bestSolution.GetSelectedItems());
        }
        internal CandidateSolution DeepClone()
        {
            var clone = new CandidateSolution(Meals, NutritionConstraints, isSelected);

            return(clone);
        }