public static void SmoothAndTrack(LinePath basePath, bool useTargetPath, IList<LinePath> leftBounds, IList<LinePath> rightBounds, double maxSpeed, double? endingHeading, bool endingOffsetBound, CarTimestamp curTimestamp, bool doAvoidance, SpeedCommand speedCommand, CarTimestamp behaviorTimestamp, string commandLabel, ref bool cancelled, ref LinePath previousSmoothedPath, ref CarTimestamp previousSmoothedPathTimestamp, ref double? approachSpeed) { // if we're in listen mode, just return for now if (OperationalBuilder.BuildMode == BuildMode.Listen) { return; } PathPlanner.PlanningResult result; double curSpeed = Services.StateProvider.GetVehicleState().speed; LinePath targetPath = new LinePath(); double initialHeading = 0; // get the part we just used to make a prediction if (useTargetPath && previousSmoothedPath != null) { //targetPath = previousSmoothedPath.Transform(Services.RelativePose.GetTransform(previousSmoothedPathTimestamp, curTimestamp)); // interpolate the path with a smoothing spline //targetPath = targetPath.SplineInterpolate(0.05); //Services.UIService.PushRelativePath(targetPath, curTimestamp, "prediction path2"); // calculate the point speed*dt ahead /*double lookaheadDist = curSpeed*0.20; if (lookaheadDist > 0.1) { LinePath.PointOnPath pt = targetPath.AdvancePoint(targetPath.ZeroPoint, lookaheadDist); // get the heading initialHeading = targetPath.GetSegment(pt.Index).UnitVector.ArcTan; // adjust the base path start point to be the predicted location basePath[0] = pt.Location; // get the part we just used to make a prediction predictionPath = targetPath.SubPath(targetPath.ZeroPoint, pt); // push to the UI Services.UIService.PushRelativePath(predictionPath, curTimestamp, "prediction path"); //basePath[0] = new Coordinates(lookaheadDist, 0); Services.UIService.PushRelativePath(basePath, curTimestamp, "subpath2"); Services.Dataset.ItemAs<double>("initial heading").Add(initialHeading, curTimestamp); // calculate a piece of the sub path //targetPath = targetPath.SubPath(targetPath.ZeroPoint, 7); }*/ // get the tracking manager to predict stuff like whoa AbsolutePose absPose; OperationalVehicleState vehicleState; Services.TrackingManager.ForwardPredict(out absPose, out vehicleState); // insert the stuff stuff basePath[0] = absPose.xy; initialHeading = absPose.heading; // start walking down the path until the angle is cool double angle_threshold = 30*Math.PI/180.0; double dist; LinePath.PointOnPath newPoint = new LinePath.PointOnPath(); for (dist = 0; dist < 10; dist += 1) { // get the point advanced from the 2nd point on the base path by dist double distTemp = dist; newPoint = basePath.AdvancePoint(basePath.GetPointOnPath(1), ref distTemp); // check if we're past the end if (distTemp > 0) { break; } // check if the angle is coolness or not double angle = Math.Acos((newPoint.Location-basePath[0]).Normalize().Dot(basePath.GetSegment(newPoint.Index).UnitVector)); if (Math.Acos(angle) < angle_threshold) { break; } } // create a new version of the base path with the stuff section removed basePath = basePath.RemoveBetween(basePath.StartPoint, newPoint); Services.UIService.PushRelativePath(basePath, curTimestamp, "subpath2"); // zero that stuff out targetPath = new LinePath(); } StaticObstacles obstacles = null; // only do the planning is we're in a lane scenario // otherwise, the obstacle grid will be WAY too large if (doAvoidance && leftBounds.Count == 1 && rightBounds.Count == 1) { // get the obstacles predicted to the current timestamp obstacles = Services.ObstaclePipeline.GetProcessedObstacles(curTimestamp); } // start the planning timer Stopwatch planningTimer = Stopwatch.StartNew(); // check if there are any obstacles if (obstacles != null && obstacles.polygons != null && obstacles.polygons.Count > 0) { if (cancelled) return; // we need to do the full obstacle avoidance // execute the obstacle manager LinePath avoidancePath; List<ObstacleManager.ObstacleType> obstacleSideFlags; bool success; Services.ObstacleManager.ProcessObstacles(basePath, leftBounds, rightBounds, obstacles.polygons, out avoidancePath, out obstacleSideFlags, out success); // check if we have success if (success) { // build the boundary lists // start with the lanes List<Boundary> leftSmootherBounds = new List<Boundary>(); List<Boundary> rightSmootherBounds = new List<Boundary>(); double laneMinSpacing = 0.1; double laneDesiredSpacing = 0.1; double laneAlphaS = 0.1; leftSmootherBounds.Add(new Boundary(leftBounds[0], laneMinSpacing, laneDesiredSpacing, laneAlphaS)); rightSmootherBounds.Add(new Boundary(rightBounds[0], laneMinSpacing, laneDesiredSpacing, laneAlphaS)); // sort out obstacles as left and right double obstacleMinSpacing = 0.8; double obstacleDesiredSpacing = 0.8; double obstacleAlphaS = 100; int totalObstacleClusters = obstacles.polygons.Count; for (int i = 0; i < totalObstacleClusters; i++) { if (obstacleSideFlags[i] == ObstacleManager.ObstacleType.Left) { Boundary bound = new Boundary(obstacles.polygons[i], obstacleMinSpacing, obstacleDesiredSpacing, obstacleAlphaS); bound.CheckFrontBumper = true; leftSmootherBounds.Add(bound); } else if (obstacleSideFlags[i] == ObstacleManager.ObstacleType.Right) { Boundary bound = new Boundary(obstacles.polygons[i], obstacleMinSpacing, obstacleDesiredSpacing, obstacleAlphaS); bound.CheckFrontBumper = true; rightSmootherBounds.Add(bound); } } if (cancelled) return; // execute the smoothing PathPlanner planner = new PathPlanner(); planner.Options.alpha_w = 0; planner.Options.alpha_d = 10; planner.Options.alpha_c = 10; result = planner.PlanPath(avoidancePath, targetPath, leftSmootherBounds, rightSmootherBounds, initialHeading, maxSpeed, Services.StateProvider.GetVehicleState().speed, endingHeading, curTimestamp, endingOffsetBound); } else { // mark that we did not succeed result = new PathPlanner.PlanningResult(SmoothResult.Infeasible, null); } } else { if (cancelled) return; // do the path smoothing PathPlanner planner = new PathPlanner(); List<LineList> leftList = new List<LineList>(); foreach (LinePath ll in leftBounds) leftList.Add(ll); List<LineList> rightList = new List<LineList>(); foreach (LinePath rl in rightBounds) rightList.Add(rl); planner.Options.alpha_w = 0; planner.Options.alpha_s = 0.1; planner.Options.alpha_d = 10; planner.Options.alpha_c = 10; result = planner.PlanPath(basePath, targetPath, leftList, rightList, initialHeading, maxSpeed, Services.StateProvider.GetVehicleState().speed, endingHeading, curTimestamp, endingOffsetBound); } planningTimer.Stop(); BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "planning took {0} ms", planningTimer.ElapsedMilliseconds); Services.Dataset.ItemAs<bool>("route feasible").Add(result.result == SmoothResult.Sucess, LocalCarTimeProvider.LocalNow); if (result.result == SmoothResult.Sucess) { // insert the point (-1,0) so we make sure that the zero point during tracking is at the vehicle //Coordinates startingVec = result.path[1].Point-result.path[0].Point; //Coordinates insertPoint = result.path[0].Point-startingVec.Normalize(); //result.path.Insert(0, new OperationalLayer.PathPlanning.PathPoint(insertPoint, maxSpeed)); previousSmoothedPath = new LinePath(result.path); previousSmoothedPathTimestamp = curTimestamp; Services.UIService.PushLineList(previousSmoothedPath, curTimestamp, "smoothed path", true); if (cancelled) return; // we've planned out the path, now build up the command ISpeedGenerator speedGenerator; if (speedCommand is ScalarSpeedCommand) { /*if (result.path.HasSpeeds) { speedGenerator = result.path; } else {*/ speedGenerator = new ConstantSpeedGenerator(maxSpeed, null); //} } else if (speedCommand is StopAtDistSpeedCommand) { StopAtDistSpeedCommand stopCommand = (StopAtDistSpeedCommand)speedCommand; IDistanceProvider distProvider = new TravelledDistanceProvider(behaviorTimestamp, stopCommand.Distance); speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value); BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance()); } else if (speedCommand is StopAtLineSpeedCommand) { IDistanceProvider distProvider = new StoplineDistanceProvider(); speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value); BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance()); } else if (speedCommand == null) { throw new InvalidOperationException("Speed command is null"); } else { throw new InvalidOperationException("Speed command " + speedCommand.GetType().FullName + " is not supported"); } if (cancelled) return; // build up the command TrackingCommand trackingCommand = new TrackingCommand(new FeedbackSpeedCommandGenerator(speedGenerator), new PathSteeringCommandGenerator(result.path), false); trackingCommand.Label = commandLabel; // queue it to execute Services.TrackingManager.QueueCommand(trackingCommand); } }
protected void Track(PlanningResult planningResult, string commandLabel) { Services.Dataset.ItemAs<bool>("route feasible").Add(!planningResult.pathBlocked, LocalCarTimeProvider.LocalNow); if (planningResult.smoothedPath != null && !planningResult.dynamicallyInfeasible) { prevSmoothedPath = new LinePath(planningResult.smoothedPath); prevSmoothedPathTimestamp = curTimestamp; } if (planningResult.smoothedPath != null) { Services.UIService.PushLineList(prevSmoothedPath, curTimestamp, "smoothed path", true); } if (cancelled) return; ISpeedCommandGenerator speedCommandGenerator = planningResult.speedCommandGenerator; ISteeringCommandGenerator steeringCommandGenerator = planningResult.steeringCommandGenerator; if (speedCommandGenerator == null) { // we've planned out the path, now build up the command ISpeedGenerator speedGenerator = null; if (speedCommand is ScalarSpeedCommand) { // extract the max speed from the planning settings double maxSpeed = settings.maxSpeed; if (planningResult.smoothedPath != null) { SmoothedPath path = planningResult.smoothedPath; maxSpeed = Math.Min(maxSpeed, PostProcessSpeed(path)); } speedGenerator = new ConstantSpeedGenerator(maxSpeed, null); } else if (speedCommand is StopAtDistSpeedCommand) { StopAtDistSpeedCommand stopCommand = (StopAtDistSpeedCommand)speedCommand; IDistanceProvider distProvider = new TravelledDistanceProvider(behaviorTimestamp, stopCommand.Distance); speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value); BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance()); } else if (speedCommand is StopAtLineSpeedCommand) { IDistanceProvider distProvider = new StoplineDistanceProvider(); speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value); BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance()); } else if (speedCommand == null) { throw new InvalidOperationException("Speed command is null"); } else { throw new InvalidOperationException("Speed command " + speedCommand.GetType().FullName + " is not supported"); } speedCommandGenerator = new FeedbackSpeedCommandGenerator(speedGenerator); } if (cancelled) return; // build up the command TrackingCommand trackingCommand = new TrackingCommand(speedCommandGenerator, steeringCommandGenerator, false); trackingCommand.Label = planningResult.commandLabel ?? commandLabel; // queue it to execute Services.TrackingManager.QueueCommand(trackingCommand); }