public CHull canMerge(CHull a, CHull b) { if (!a.overlap(b)) // if their AABB's (with a little slop) don't overlap, then return. { return(null); } CHull ret = null; // ok..we are going to combine both meshes into a single mesh // and then we are going to compute the concavity... VertexPool vc = new VertexPool(); List <int> indices = new List <int>(); getMesh(a.mResult, vc, indices); getMesh(b.mResult, vc, indices); int vcount = vc.GetSize(); List <float3> vertices = vc.GetVertices(); int tcount = indices.Count / 3; //don't do anything if hull is empty if (tcount == 0) { vc.Clear(); return(null); } HullResult hresult = new HullResult(); HullDesc desc = new HullDesc(); desc.SetHullFlag(HullFlag.QF_TRIANGLES); desc.Vertices = vertices; HullError hret = HullUtils.CreateConvexHull(desc, ref hresult); if (hret == HullError.QE_OK) { float combineVolume = Concavity.computeMeshVolume(hresult.OutputVertices, hresult.Indices); float sumVolume = a.mVolume + b.mVolume; float percent = (sumVolume * 100) / combineVolume; if (percent >= (100.0f - MERGE_PERCENT)) { ConvexResult cr = new ConvexResult(hresult.OutputVertices, hresult.Indices); ret = new CHull(cr); } } vc.Clear(); return(ret); }
public void getMesh(ConvexResult cr, VertexPool vc, List <int> indices) { List <int> src = cr.HullIndices; for (int i = 0; i < src.Count / 3; i++) { int i1 = src[i * 3 + 0]; int i2 = src[i * 3 + 1]; int i3 = src[i * 3 + 2]; float3 p1 = cr.HullVertices[i1]; float3 p2 = cr.HullVertices[i2]; float3 p3 = cr.HullVertices[i3]; i1 = vc.getIndex(p1); i2 = vc.getIndex(p2); i3 = vc.getIndex(p3); } }
public CHull(ConvexResult result) { mResult = new ConvexResult(result); mVolume = Concavity.computeMeshVolume(result.HullVertices, result.HullIndices); mDiagonal = getBoundingRegion(result.HullVertices, mMin, mMax); float dx = mMax[0] - mMin[0]; float dy = mMax[1] - mMin[1]; float dz = mMax[2] - mMin[2]; dx *= 0.1f; // inflate 1/10th on each edge dy *= 0.1f; // inflate 1/10th on each edge dz *= 0.1f; // inflate 1/10th on each edge mMin[0] -= dx; mMin[1] -= dy; mMin[2] -= dz; mMax[0] += dx; mMax[1] += dy; mMax[2] += dz; }
public ConvexResult(ConvexResult r) { HullVertices = new List <float3>(r.HullVertices); HullIndices = new List <int>(r.HullIndices); }
// Callback from convex hull creater with a newly created hull. // Just add it to our collection of hulls for this shape. private void HullReturn(ConvexResult result) { m_hulls.Add(result); return; }
public void Dispose() { mResult = null; }
public void ConvexDecompResult(ConvexResult result) { CHull ch = new CHull(result); mChulls.Add(ch); }
public int process(DecompDesc desc) { int ret = 0; MAXDEPTH = (int)desc.mDepth; CONCAVE_PERCENT = desc.mCpercent; MERGE_PERCENT = desc.mPpercent; ConvexDecomposition.calcConvexDecomposition(desc.mVertices, desc.mIndices, ConvexDecompResult, 0f, 0, MAXDEPTH, CONCAVE_PERCENT, MERGE_PERCENT); while (combineHulls()) // keep combinging hulls until I can't combine any more... { ; } int i; for (i = 0; i < mChulls.Count; i++) { CHull cr = mChulls[i]; // before we hand it back to the application, we need to regenerate the hull based on the // limits given by the user. ConvexResult c = cr.mResult; // the high resolution hull... HullResult result = new HullResult(); HullDesc hdesc = new HullDesc(); hdesc.SetHullFlag(HullFlag.QF_TRIANGLES); hdesc.Vertices = c.HullVertices; hdesc.MaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output if (desc.mSkinWidth != 0f) { hdesc.SkinWidth = desc.mSkinWidth; hdesc.SetHullFlag(HullFlag.QF_SKIN_WIDTH); // do skin width computation. } HullError ret2 = HullUtils.CreateConvexHull(hdesc, ref result); if (ret2 == HullError.QE_OK) { ConvexResult r = new ConvexResult(result.OutputVertices, result.Indices); r.mHullVolume = Concavity.computeMeshVolume(result.OutputVertices, result.Indices); // the volume of the hull. // compute the best fit OBB //computeBestFitOBB(result.mNumOutputVertices, result.mOutputVertices, sizeof(float) * 3, r.mOBBSides, r.mOBBTransform); //r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] * r.mOBBSides[2]; // compute the OBB volume. //fm_getTranslation(r.mOBBTransform, r.mOBBCenter); // get the translation component of the 4x4 matrix. //fm_matrixToQuat(r.mOBBTransform, r.mOBBOrientation); // extract the orientation as a quaternion. //r.mSphereRadius = computeBoundingSphere(result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter); //r.mSphereVolume = fm_sphereVolume(r.mSphereRadius); mCallback(r); } result = null; cr.Dispose(); } ret = mChulls.Count; mChulls.Clear(); return(ret); }
public int process(DecompDesc desc) { int ret = 0; MAXDEPTH = (int)desc.mDepth; CONCAVE_PERCENT = desc.mCpercent; MERGE_PERCENT = desc.mPpercent; ConvexDecomposition.calcConvexDecomposition(desc.mVertices, desc.mIndices, ConvexDecompResult, 0f, 0, MAXDEPTH, CONCAVE_PERCENT, MERGE_PERCENT); while (combineHulls()) // keep combinging hulls until I can't combine any more... ; int i; for (i = 0; i < mChulls.Count; i++) { CHull cr = mChulls[i]; // before we hand it back to the application, we need to regenerate the hull based on the // limits given by the user. ConvexResult c = cr.mResult; // the high resolution hull... HullResult result = new HullResult(); HullDesc hdesc = new HullDesc(); hdesc.SetHullFlag(HullFlag.QF_TRIANGLES); hdesc.Vertices = c.HullVertices; hdesc.MaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output if (desc.mSkinWidth != 0f) { hdesc.SkinWidth = desc.mSkinWidth; hdesc.SetHullFlag(HullFlag.QF_SKIN_WIDTH); // do skin width computation. } HullError ret2 = HullUtils.CreateConvexHull(hdesc, ref result); if (ret2 == HullError.QE_OK) { ConvexResult r = new ConvexResult(result.OutputVertices, result.Indices); r.mHullVolume = Concavity.computeMeshVolume(result.OutputVertices, result.Indices); // the volume of the hull. // compute the best fit OBB //computeBestFitOBB(result.mNumOutputVertices, result.mOutputVertices, sizeof(float) * 3, r.mOBBSides, r.mOBBTransform); //r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] * r.mOBBSides[2]; // compute the OBB volume. //fm_getTranslation(r.mOBBTransform, r.mOBBCenter); // get the translation component of the 4x4 matrix. //fm_matrixToQuat(r.mOBBTransform, r.mOBBOrientation); // extract the orientation as a quaternion. //r.mSphereRadius = computeBoundingSphere(result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter); //r.mSphereVolume = fm_sphereVolume(r.mSphereRadius); mCallback(r); } result = null; cr.Dispose(); } ret = mChulls.Count; mChulls.Clear(); return ret; }
public CHull canMerge(CHull a, CHull b) { if (!a.overlap(b)) // if their AABB's (with a little slop) don't overlap, then return. return null; CHull ret = null; // ok..we are going to combine both meshes into a single mesh // and then we are going to compute the concavity... VertexPool vc = new VertexPool(); List<int> indices = new List<int>(); getMesh(a.mResult, vc, indices); getMesh(b.mResult, vc, indices); int vcount = vc.GetSize(); List<float3> vertices = vc.GetVertices(); int tcount = indices.Count / 3; //don't do anything if hull is empty if (tcount == 0) { vc.Clear(); return null; } HullResult hresult = new HullResult(); HullDesc desc = new HullDesc(); desc.SetHullFlag(HullFlag.QF_TRIANGLES); desc.Vertices = vertices; HullError hret = HullUtils.CreateConvexHull(desc, ref hresult); if (hret == HullError.QE_OK) { float combineVolume = Concavity.computeMeshVolume(hresult.OutputVertices, hresult.Indices); float sumVolume = a.mVolume + b.mVolume; float percent = (sumVolume * 100) / combineVolume; if (percent >= (100.0f - MERGE_PERCENT)) { ConvexResult cr = new ConvexResult(hresult.OutputVertices, hresult.Indices); ret = new CHull(cr); } } vc.Clear(); return ret; }
public void getMesh(ConvexResult cr, VertexPool vc, List<int> indices) { List<int> src = cr.HullIndices; for (int i = 0; i < src.Count / 3; i++) { int i1 = src[i * 3 + 0]; int i2 = src[i * 3 + 1]; int i3 = src[i * 3 + 2]; float3 p1 = cr.HullVertices[i1]; float3 p2 = cr.HullVertices[i2]; float3 p3 = cr.HullVertices[i3]; i1 = vc.getIndex(p1); i2 = vc.getIndex(p2); i3 = vc.getIndex(p3); } }
public ConvexResult(ConvexResult r) { HullVertices = new List<float3>(r.HullVertices); HullIndices = new List<int>(r.HullIndices); }
public static void calcConvexDecomposition(List <float3> vertices, List <int> indices, ConvexDecompositionCallback callback, float masterVolume, int depth, int maxDepth, float concavePercent, float mergePercent) { float4 plane = new float4(); bool split = false; if (depth < maxDepth) { float volume = 0f; float c = Concavity.computeConcavity(vertices, indices, ref plane, ref volume); if (depth == 0) { masterVolume = volume; } float percent = (c * 100.0f) / masterVolume; if (percent > concavePercent) // if great than 5% of the total volume is concave, go ahead and keep splitting. { split = true; } } if (depth >= maxDepth || !split) { HullResult result = new HullResult(); HullDesc desc = new HullDesc(); desc.SetHullFlag(HullFlag.QF_TRIANGLES); desc.Vertices = vertices; HullError ret = HullUtils.CreateConvexHull(desc, ref result); if (ret == HullError.QE_OK) { ConvexResult r = new ConvexResult(result.OutputVertices, result.Indices); callback(r); } return; } List <int> ifront = new List <int>(); List <int> iback = new List <int>(); VertexPool vfront = new VertexPool(); VertexPool vback = new VertexPool(); // ok..now we are going to 'split' all of the input triangles against this plane! for (int i = 0; i < indices.Count / 3; i++) { int i1 = indices[i * 3 + 0]; int i2 = indices[i * 3 + 1]; int i3 = indices[i * 3 + 2]; FaceTri t = new FaceTri(vertices, i1, i2, i3); float3[] front = new float3[4]; float3[] back = new float3[4]; int fcount = 0; int bcount = 0; PlaneTriResult result = PlaneTri.planeTriIntersection(plane, t, 0.00001f, ref front, out fcount, ref back, out bcount); if (fcount > 4 || bcount > 4) { result = PlaneTri.planeTriIntersection(plane, t, 0.00001f, ref front, out fcount, ref back, out bcount); } switch (result) { case PlaneTriResult.PTR_FRONT: Debug.Assert(fcount == 3); addTri(vfront, ifront, front[0], front[1], front[2]); break; case PlaneTriResult.PTR_BACK: Debug.Assert(bcount == 3); addTri(vback, iback, back[0], back[1], back[2]); break; case PlaneTriResult.PTR_SPLIT: Debug.Assert(fcount >= 3 && fcount <= 4); Debug.Assert(bcount >= 3 && bcount <= 4); addTri(vfront, ifront, front[0], front[1], front[2]); addTri(vback, iback, back[0], back[1], back[2]); if (fcount == 4) { addTri(vfront, ifront, front[0], front[2], front[3]); } if (bcount == 4) { addTri(vback, iback, back[0], back[2], back[3]); } break; } } // ok... here we recursively call if (ifront.Count > 0) { int vcount = vfront.GetSize(); List <float3> vertices2 = vfront.GetVertices(); for (int i = 0; i < vertices2.Count; i++) { vertices2[i] = new float3(vertices2[i]); } int tcount = ifront.Count / 3; calcConvexDecomposition(vertices2, ifront, callback, masterVolume, depth + 1, maxDepth, concavePercent, mergePercent); } ifront.Clear(); vfront.Clear(); if (iback.Count > 0) { int vcount = vback.GetSize(); List <float3> vertices2 = vback.GetVertices(); int tcount = iback.Count / 3; calcConvexDecomposition(vertices2, iback, callback, masterVolume, depth + 1, maxDepth, concavePercent, mergePercent); } iback.Clear(); vback.Clear(); }