示例#1
0
文件: Face.cs 项目: RavenB/gridsearch
        private static void BuildFace(ref Face face, LLObject.ObjectData prim, List<Vertex> vertices, Path path,
            Profile profile, LLObject.TextureEntryFace teFace)
        {
            if (teFace != null)
                face.TextureFace = teFace;
            else
                throw new ArgumentException("teFace cannot be null");

            face.Vertices.Clear();

            if ((face.Mask & FaceMask.Cap) != 0)
            {
                if (((face.Mask & FaceMask.Hollow) == 0) &&
                    ((face.Mask & FaceMask.Open) == 0) &&
                    (prim.PathBegin == 0f) &&
                    (prim.ProfileCurve == LLObject.ProfileCurve.Square) &&
                    (prim.PathCurve == LLObject.PathCurve.Line))
                {
                    CreateUnCutCubeCap(ref face, vertices, path, profile);
                }
                else
                {
                    CreateCap(ref face, vertices, path, profile);
                }
            }
            else if ((face.Mask & FaceMask.End) != 0 || (face.Mask & FaceMask.Side) != 0)
            {
                CreateSide(ref face, prim, vertices, path, profile);
            }
            else
            {
                throw new RenderingException("Unknown/uninitialized face type");
            }
        }
示例#2
0
 private Path GeneratePath()
 {
     Path path = new Path();
     path.Points = new List<PathPoint>();
     return path;
 }
示例#3
0
文件: Face.cs 项目: RavenB/gridsearch
        private static void CreateUnCutCubeCap(ref Face face, List<Vertex> primVertices, Path path, Profile profile)
        {
            int maxS = profile.Positions.Count;
            int maxT = path.Points.Count;

            int gridSize = (profile.Positions.Count - 1) / 4;
            int quadCount = gridSize * gridSize;
            //int numVertices = (gridSize + 1) * (gridSize + 1);
            //int numIndices = quadCount * 4;

            int offset = 0;
            if ((face.Mask & FaceMask.Top) != 0)
                offset = (maxT - 1) * maxS;
            else
                offset = face.BeginS;

            Vertex[] corners = new Vertex[4];
            Vertex baseVert;

            for (int t = 0; t < 4; t++)
            {
                corners[t].Position = primVertices[offset + (gridSize * t)].Position;
                corners[t].TexCoord.X = profile.Positions[gridSize * t].X + 0.5f;
                corners[t].TexCoord.Y = 0.5f - profile.Positions[gridSize * t].Y;
            }

            baseVert.Normal =
                ((corners[1].Position - corners[0].Position) %
                (corners[2].Position - corners[1].Position));
            baseVert.Normal = Vector3.Normalize(baseVert.Normal);

            if ((face.Mask & FaceMask.Top) != 0)
            {
                baseVert.Normal *= -1f;
            }
            else
            {
                // Swap the UVs on the U(X) axis for top face
                Vector2 swap;

                swap = corners[0].TexCoord;
                corners[0].TexCoord = corners[3].TexCoord;
                corners[3].TexCoord = swap;

                swap = corners[1].TexCoord;
                corners[1].TexCoord = corners[2].TexCoord;
                corners[2].TexCoord = swap;
            }

            baseVert.Binormal = CalcBinormalFromTriangle(
                corners[0].Position, corners[0].TexCoord,
                corners[1].Position, corners[1].TexCoord,
                corners[2].Position, corners[2].TexCoord);

            for (int t = 0; t < 4; t++)
            {
                corners[t].Binormal = baseVert.Binormal;
                corners[t].Normal = baseVert.Normal;
            }

            int vtop = face.Vertices.Count;

            for (int gx = 0; gx < gridSize + 1; gx++)
            {
                for (int gy = 0; gy < gridSize + 1; gy++)
                {
                    Vertex newVert = new Vertex();
                    LerpPlanarVertex(
                        corners[0],
                        corners[1],
                        corners[3],
                        ref newVert,
                        (float)gx / (float)gridSize,
                        (float)gy / (float)gridSize);

                    face.Vertices.Add(newVert);

                    if (gx == 0 && gy == 0)
                        face.MinExtent = face.MaxExtent = newVert.Position;
                    else
                        UpdateMinMax(ref face, newVert.Position);
                }
            }

            face.Center = (face.MinExtent + face.MaxExtent) * 0.5f;

            int[] idxs = new int[] { 0, 1, gridSize + 2, gridSize + 2, gridSize + 1, 0 };

            for (int gx = 0; gx < gridSize; gx++)
            {
                for (int gy = 0; gy < gridSize; gy++)
                {
                    if ((face.Mask & FaceMask.Top) != 0)
                    {
                        for (int i = 5; i >= 0; i--)
                            face.Indices.Add((ushort)(vtop + (gy * (gridSize + 1)) + gx + idxs[i]));
                    }
                    else
                    {
                        for (int i = 0; i < 6; i++)
                            face.Indices.Add((ushort)(vtop + (gy * (gridSize + 1)) + gx + idxs[i]));
                    }
                }
            }
        }
示例#4
0
文件: Face.cs 项目: RavenB/gridsearch
        private static void CreateSide(ref Face face, LLObject.ObjectData prim, List<Vertex> primVertices, Path path,
            Profile profile)
        {
            bool flat = (face.Mask & FaceMask.Flat) != 0;

            int maxS = profile.Positions.Count;
            int s, t, i;
            float ss, tt;

            int numVertices = face.NumS * face.NumT;
            int numIndices = (face.NumS - 1) * (face.NumT - 1) * 6;

            face.Center = Vector3.Zero;

            int beginSTex = (int)Math.Floor(profile.Positions[face.BeginS].Z);
            int numS =
                (((face.Mask & FaceMask.Inner) != 0) && ((face.Mask & FaceMask.Flat) != 0) && face.NumS > 2) ?
                    face.NumS / 2 :
                    face.NumS;

            int curVertex = 0;

            // Copy the vertices into the array
            for (t = face.BeginT; t < face.BeginT + face.NumT; t++)
            {
                tt = path.Points[t].TexT;

                for (s = 0; s < numS; s++)
                {
                    if ((face.Mask & FaceMask.End) != 0)
                    {
                        if (s != 0)
                            ss = 1f;
                        else
                            ss = 0f;
                    }
                    else
                    {
                        // Get s value for tex-coord
                        if (!flat)
                            ss = profile.Positions[face.BeginS + s].Z;
                        else
                            ss = profile.Positions[face.BeginS + s].Z - beginSTex;
                    }

                    // Check to see if this triangle wraps around the array
                    if (face.BeginS + s >= maxS)
                        i = face.BeginS + s + maxS * (t - 1); // We're wrapping
                    else
                        i = face.BeginS + s + maxS * t;

                    Vertex vertex = new Vertex();
                    vertex.Position = primVertices[i].Position;
                    vertex.TexCoord = new Vector2(ss, tt);
                    vertex.Normal = Vector3.Zero;
                    vertex.Binormal = Vector3.Zero;

                    if (curVertex == 0)
                        face.MinExtent = face.MaxExtent = primVertices[i].Position;
                    else
                        UpdateMinMax(ref face, primVertices[i].Position);

                    face.Vertices.Add(vertex);
                    ++curVertex;

                    if (((face.Mask & FaceMask.Inner) != 0) && ((face.Mask & FaceMask.Flat) != 0) && face.NumS > 2 && s > 0)
                    {
                        vertex.Position = primVertices[i].Position;
                        //vertex.TexCoord = new Vector2(ss, tt);
                        //vertex.Normal = Vector3.Zero;
                        //vertex.Binormal = Vector3.Zero;

                        face.Vertices.Add(vertex);
                        ++curVertex;
                    }
                }

                if (((face.Mask & FaceMask.Inner) != 0) && ((face.Mask & FaceMask.Flat) != 0) && face.NumS > 2)
                {
                    if ((face.Mask & FaceMask.Open) != 0)
                        s = numS - 1;
                    else
                        s = 0;

                    i = face.BeginS + s + maxS * t;
                    ss = profile.Positions[face.BeginS + s].Z - beginSTex;

                    Vertex vertex = new Vertex();
                    vertex.Position = primVertices[i].Position;
                    vertex.TexCoord = new Vector2(ss, tt);
                    vertex.Normal = Vector3.Zero;
                    vertex.Binormal = Vector3.Zero;

                    UpdateMinMax(ref face, vertex.Position);

                    face.Vertices.Add(vertex);
                    ++curVertex;
                }
            }

            face.Center = (face.MinExtent + face.MaxExtent) * 0.5f;

            bool flatFace = ((face.Mask & FaceMask.Flat) != 0);

            // Now we generate the indices
            for (t = 0; t < (face.NumT - 1); t++)
            {
                for (s = 0; s < (face.NumS - 1); s++)
                {
                    face.Indices.Add((ushort)(s + face.NumS * t)); // Bottom left
                    face.Indices.Add((ushort)(s + 1 + face.NumS * (t + 1))); // Top right
                    face.Indices.Add((ushort)(s + face.NumS * (t + 1))); // Top left
                    face.Indices.Add((ushort)(s + face.NumS * t)); // Bottom left
                    face.Indices.Add((ushort)(s + 1 + face.NumS * t)); // Bottom right
                    face.Indices.Add((ushort)(s + 1 + face.NumS * (t + 1))); // Top right

                    face.Edge.Add((face.NumS - 1) * 2 * t + s * 2 + 1); // Bottom left/top right neighbor face

                    if (t < face.NumT - 2) // Top right/top left neighbor face
                        face.Edge.Add((face.NumS - 1) * 2 * (t + 1) + s * 2 + 1);
                    else if (face.NumT <= 3 || path.Open) // No neighbor
                        face.Edge.Add(-1);
                    else // Wrap on T
                        face.Edge.Add(s * 2 + 1);

                    if (s > 0) // Top left/bottom left neighbor face
                        face.Edge.Add((face.NumS - 1) * 2 * t + s * 2 - 1);
                    else if (flatFace || profile.Open) // No neighbor
                        face.Edge.Add(-1);
                    else // Wrap on S
                        face.Edge.Add((face.NumS - 1) * 2 * t + (face.NumS - 2) * 2 + 1);

                    if (t > 0) // Bottom left/bottom right neighbor face
                        face.Edge.Add((face.NumS - 1) * 2 * (t - 1) + s * 2);
                    else if (face.NumT <= 3 || path.Open) // No neighbor
                        face.Edge.Add(-1);
                    else // Wrap on T
                        face.Edge.Add((face.NumS - 1) * 2 * (face.NumT - 2) + s * 2);

                    if (s < face.NumS - 2) // Bottom right/top right neighbor face
                        face.Edge.Add((face.NumS - 1) * 2 * t + (s + 1) * 2);
                    else if (flatFace || profile.Open) // No neighbor
                        face.Edge.Add(-1);
                    else // Wrap on S
                        face.Edge.Add((face.NumS - 1) * 2 * t);

                    face.Edge.Add((face.NumS - 1) * 2 * t + s * 2); // Top right/bottom left neighbor face	
                }
            }

            // Generate normals, loop through each triangle
            for (i = 0; i < face.Indices.Count / 3; i++)
            {
                Vertex v0 = face.Vertices[face.Indices[i * 3 + 0]];
                Vertex v1 = face.Vertices[face.Indices[i * 3 + 1]];
                Vertex v2 = face.Vertices[face.Indices[i * 3 + 2]];

                // Calculate triangle normal
                Vector3 norm = (v0.Position - v1.Position) % (v0.Position - v2.Position);

                // Calculate binormal
                Vector3 binorm = CalcBinormalFromTriangle(v0.Position, v0.TexCoord, v1.Position, v1.TexCoord,
                    v2.Position, v2.TexCoord);

                // Add triangle normal to vertices
                for (int j = 0; j < 3; j++)
                {
                    Vertex vertex = face.Vertices[face.Indices[i * 3 + j]];
                    vertex.Normal += norm;
                    vertex.Binormal += binorm;
                    face.Vertices[face.Indices[i * 3 + j]] = vertex;
                }

                // Even out quad contributions
                if (i % 2 == 0)
                {
                    Vertex vertex = face.Vertices[face.Indices[i * 3 + 2]];
                    vertex.Normal += norm;
                    vertex.Binormal += binorm;
                    face.Vertices[face.Indices[i * 3 + 2]] = vertex;
                }
                else
                {
                    Vertex vertex = face.Vertices[face.Indices[i * 3 + 1]];
                    vertex.Normal += norm;
                    vertex.Binormal += binorm;
                    face.Vertices[face.Indices[i * 3 + 1]] = vertex;
                }
            }

            // Adjust normals based on wrapping and stitching
            Vector3 test1 =
                face.Vertices[0].Position -
                face.Vertices[face.NumS * (face.NumT - 2)].Position;

            Vector3 test2 =
                face.Vertices[face.NumS - 1].Position -
                face.Vertices[face.NumS * (face.NumT - 2) +
                face.NumS - 1].Position;

            bool sBottomConverges = (test1.LengthSquared() < 0.000001f);
            bool sTopConverges = (test2.LengthSquared() < 0.000001f);

            // TODO: Sculpt support
            Primitive.SculptType sculptType = Primitive.SculptType.None;

            if (sculptType == Primitive.SculptType.None)
            {
                if (!path.Open)
                {
                    // Wrap normals on T
                    for (i = 0; i < face.NumS; i++)
                    {
                        Vector3 norm = face.Vertices[i].Normal + face.Vertices[face.NumS * (face.NumT - 1) + i].Normal;

                        Vertex vertex = face.Vertices[i];
                        vertex.Normal = norm;
                        face.Vertices[i] = vertex;

                        vertex = face.Vertices[face.NumS * (face.NumT - 1) + i];
                        vertex.Normal = norm;
                        face.Vertices[face.NumS * (face.NumT - 1) + i] = vertex;
                    }
                }

                if (!profile.Open && !sBottomConverges)
                {
                    // Wrap normals on S
                    for (i = 0; i < face.NumT; i++)
                    {
                        Vector3 norm = face.Vertices[face.NumS * i].Normal + face.Vertices[face.NumS * i + face.NumS - 1].Normal;

                        Vertex vertex = face.Vertices[face.NumS * i];
                        vertex.Normal = norm;
                        face.Vertices[face.NumS * i] = vertex;

                        vertex = face.Vertices[face.NumS * i + face.NumS - 1];
                        vertex.Normal = norm;
                        face.Vertices[face.NumS * i + face.NumS - 1] = vertex;
                    }
                }

                if (prim.PathCurve == LLObject.PathCurve.Circle &&
                    prim.ProfileCurve == LLObject.ProfileCurve.HalfCircle)
                {
                    if (sBottomConverges)
                    {
                        // All lower S have same normal
                        Vector3 unitX = new Vector3(1f, 0f, 0f);

                        for (i = 0; i < face.NumT; i++)
                        {
                            Vertex vertex = face.Vertices[face.NumS * i];
                            vertex.Normal = unitX;
                            face.Vertices[face.NumS * i] = vertex;
                        }
                    }

                    if (sTopConverges)
                    {
                        // All upper S have same normal
                        Vector3 negUnitX = new Vector3(-1f, 0f, 0f);

                        for (i = 0; i < face.NumT; i++)
                        {
                            Vertex vertex = face.Vertices[face.NumS * i + face.NumS - 1];
                            vertex.Normal = negUnitX;
                            face.Vertices[face.NumS * i + face.NumS - 1] = vertex;
                        }
                    }
                }
            }
            else
            {
                // FIXME: Sculpt support
            }

            // Normalize normals and binormals
            for (i = 0; i < face.Vertices.Count; i++)
            {
                Vertex vertex = face.Vertices[i];
                vertex.Normal.Normalize();
                vertex.Binormal.Normalize();
                face.Vertices[i] = vertex;
            }
        }
示例#5
0
文件: Face.cs 项目: RavenB/gridsearch
        private static void CreateCap(ref Face face, List<Vertex> primVertices, Path path, Profile profile)
        {
            int i;
            int numVertices = profile.Positions.Count;
            //int numIndices = (numVertices - 2) * 3;

            int maxS = profile.Positions.Count;
            int maxT = path.Points.Count;

            face.Center = Vector3.Zero;

            int offset = 0;
            if ((face.Mask & FaceMask.Top) != 0)
                offset = (maxT - 1) * maxS;
            else
                offset = face.BeginS;

            // Figure out the normal, assume all caps are flat faces.
            // Cross product to get normals
            Vector2 cuv;
            Vector2 minUV = Vector2.Zero;
            Vector2 maxUV = Vector2.Zero;

            // Copy the vertices into the array
            for (i = 0; i < numVertices; i++)
            {
                Vertex vertex = new Vertex();

                if ((face.Mask & FaceMask.Top) != 0)
                {
                    vertex.Position = primVertices[i + offset].Position;
                    vertex.TexCoord.X = profile.Positions[i].X + 0.5f;
                    vertex.TexCoord.Y = profile.Positions[i].Y + 0.5f;
                }
                else
                {
                    // Mirror for underside
                    vertex.Position = primVertices[(numVertices - 1) - i].Position;
                    vertex.TexCoord.X = profile.Positions[i].X + 0.5f;
                    vertex.TexCoord.Y = 0.5f - profile.Positions[i].Y;
                }

                if (i == 0)
                {
                    face.MinExtent = face.MaxExtent = primVertices[offset].Position;
                    minUV = maxUV = primVertices[offset].TexCoord;
                }
                else
                {
                    UpdateMinMax(ref face, vertex.Position);
                    UpdateMinMax(ref minUV, ref maxUV, vertex.TexCoord);
                }

                face.Vertices.Add(vertex);
            }

            face.Center = (face.MinExtent + face.MaxExtent) * 0.5f;
            cuv = (minUV + maxUV) * 0.5f;

            Vector3 binormal = CalcBinormalFromTriangle(
                face.Center, cuv,
                face.Vertices[0].Position, face.Vertices[0].TexCoord,
                face.Vertices[1].Position, face.Vertices[1].TexCoord);
            binormal.Normalize();

            Vector3 d0 = face.Center - face.Vertices[0].Position;
            Vector3 d1 = face.Center - face.Vertices[1].Position;
            Vector3 normal = ((face.Mask & FaceMask.Top) != 0) ? (d0 % d1) : (d1 % d0);
            normal.Normalize();

            // If not hollow and not open create a center point in the cap
            if ((face.Mask & FaceMask.Hollow) == 0 && (face.Mask & FaceMask.Open) == 0)
            {
                Vertex vertex = new Vertex();
                vertex.Position = face.Center;
                vertex.Normal = normal;
                vertex.Binormal = binormal;
                vertex.TexCoord = cuv;

                face.Vertices.Add(vertex);
                numVertices++;
            }

            for (i = 0; i < numVertices; i++)
            {
                Vertex vertex = face.Vertices[i];
                vertex.Binormal = binormal;
                vertex.Normal = normal;
                face.Vertices[i] = vertex;
            }

            if ((face.Mask & FaceMask.Hollow) != 0)
            {
                if ((face.Mask & FaceMask.Top) != 0)
                {
                    // HOLLOW TOP
                    int pt1 = 0;
                    int pt2 = numVertices - 1;
                    i = 0;

                    while (pt2 - pt1 > 1)
                    {
                        if (use_tri_1a2(profile, pt1, pt2))
                        {
                            face.Indices.Add((ushort)pt1);
                            face.Indices.Add((ushort)(pt1 + 1));
                            face.Indices.Add((ushort)pt2);
                            pt1++;
                        }
                        else
                        {
                            face.Indices.Add((ushort)pt1);
                            face.Indices.Add((ushort)(pt2 - 1));
                            face.Indices.Add((ushort)pt2);
                            pt2--;
                        }
                    }
                }
                else
                {
                    // HOLLOW BOTTOM
                    int pt1 = 0;
                    int pt2 = numVertices - 1;
                    i = 0;

                    while (pt2 - pt1 > 1)
                    {
                        // Flipped backfacing from top
                        if (use_tri_1a2(profile, pt1, pt2))
                        {
                            face.Indices.Add((ushort)pt1);
                            face.Indices.Add((ushort)pt2);
                            face.Indices.Add((ushort)(pt1 + 1));
                            pt1++;
                        }
                        else
                        {
                            face.Indices.Add((ushort)pt1);
                            face.Indices.Add((ushort)pt2);
                            face.Indices.Add((ushort)(pt2 - 1));
                            pt2--;
                        }
                    }
                }
            }
            else
            {
                // SOLID OPEN TOP
                // SOLID CLOSED TOP
                // SOLID OPEN BOTTOM
                // SOLID CLOSED BOTTOM

                // Not hollow, generate the triangle fan.
                // This is a tri-fan, so we reuse the same first point for all triangles
                for (i = 0; i < numVertices - 2; i++)
                {
                    face.Indices.Add((ushort)(numVertices - 1));
                    face.Indices.Add((ushort)i);
                    face.Indices.Add((ushort)(i + 1));
                }
            }
        }
示例#6
0
        private static Path GeneratePathPolygon(LLObject.ObjectData prim, int sides, float startOff, float endScale,
            float twistScale)
        {
            Path path = new Path();
            path.Points = new List<PathPoint>();

            float revolutions = prim.PathRevolutions;
            float skew = prim.PathSkew;
            float skewMag = (float)Math.Abs(skew);
            float holeX = prim.PathScaleX * (1f - skewMag);
            float holeY = prim.PathScaleY;

            // Calculate taper begin/end for x,y (Negative means taper the beginning)
            float taperXBegin = 1f;
            float taperXEnd = 1f - prim.PathTaperX;
            float taperYBegin = 1f;
            float taperYEnd = 1f - prim.PathTaperY;

            if (taperXEnd > 1f)
            {
                // Flip tapering
                taperXBegin = 2f - taperXEnd;
                taperXEnd = 1f;
            }
            if (taperYEnd > 1f)
            {
                // Flip tapering
                taperYBegin = 2f - taperYEnd;
                taperYEnd = 1f;
            }

            // For spheres, the radius is usually zero
            float radiusStart = 0.5f;
            if (sides < 8)
                radiusStart = TABLE_SCALE[sides];

            // Scale the radius to take the hole size into account
            radiusStart *= 1f - holeY;

            // Now check the radius offset to calculate the start,end radius. (Negative means
            // decrease the start radius instead)
            float radiusEnd = radiusStart;
            float radiusOffset = prim.PathRadiusOffset;
            if (radiusOffset < 0f)
                radiusStart *= 1f + radiusOffset;
            else
                radiusEnd *= 1f - radiusOffset;

            // Is the path NOT a closed loop?
            path.Open =
                ((prim.PathEnd * endScale - prim.PathBegin < 1f) ||
                (skewMag > 0.001f) ||
                (Math.Abs(taperXEnd - taperXBegin) > 0.001d) ||
                (Math.Abs(taperYEnd - taperYBegin) > 0.001d) ||
                (Math.Abs(radiusEnd - radiusStart) > 0.001d));

            float ang, c, s;
            Quaternion twist = Quaternion.Identity;
            Quaternion qang = Quaternion.Identity;
            PathPoint point;
            Vector3 pathAxis = new Vector3(1f, 0f, 0f);
            float twistBegin = prim.PathTwistBegin * twistScale;
            float twistEnd = prim.PathTwist * twistScale;

            // We run through this once before the main loop, to make sure
            // the path begins at the correct cut
            float step = 1f / sides;
            float t = prim.PathBegin;
            ang = 2f * F_PI * revolutions * t;
            s = (float)Math.Sin(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);
            c = (float)Math.Cos(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);

            point = new PathPoint();
            point.Position = new Vector3(
                0 + MathHelper.Lerp(0, prim.PathShearX, s) +
                0 + MathHelper.Lerp(-skew, skew, t) * 0.5f,
                c + MathHelper.Lerp(0, prim.PathShearY, s),
                s);
            point.Scale.X = holeX * MathHelper.Lerp(taperXBegin, taperXEnd, t);
            point.Scale.Y = holeY * MathHelper.Lerp(taperYBegin, taperYEnd, t);
            point.TexT = t;

            // Twist rotates the path along the x,y plane
            twist = Quaternion.CreateFromAxisAngle(MathHelper.Lerp(twistBegin, twistEnd, t) * 2f * F_PI - F_PI, 0f, 0f, 1f);
            // Rotate the point around the circle's center
            qang = Quaternion.CreateFromAxisAngle(pathAxis, ang);
            point.Rotation = twist * qang;

            path.Points.Add(point);
            t += step;

            // Snap to a quantized parameter, so that cut does not
            // affect most sample points
            t = ((int)(t * sides)) / (float)sides;

            // Run through the non-cut dependent points
            point = new PathPoint();
            while (t < prim.PathEnd)
            {
                ang = 2f * F_PI * revolutions * t;
                c = (float)Math.Cos(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);
                s = (float)Math.Sin(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);

                point.Position = new Vector3(
                    0 + MathHelper.Lerp(0, prim.PathShearX, s) +
                    0 + MathHelper.Lerp(-skew, skew, t) * 0.5f,
                    c + MathHelper.Lerp(0, prim.PathShearY, s),
                    s);

                point.Scale.X = holeX * MathHelper.Lerp(taperXBegin, taperXEnd, t);
                point.Scale.Y = holeY * MathHelper.Lerp(taperYBegin, taperYEnd, t);
                point.TexT = t;

                // Twist rotates the path along the x,y plane
                twist = Quaternion.CreateFromAxisAngle(MathHelper.Lerp(twistBegin, twistEnd, t) * 2f * F_PI - F_PI, 0f, 0f, 1f);
                // Rotate the point around the circle's center
                qang = Quaternion.CreateFromAxisAngle(pathAxis, ang);
                point.Rotation = twist * qang;

                path.Points.Add(point);
                t += step;
            }

            // Make one final pass for the end cut
            t = prim.PathEnd;
            point = new PathPoint();
            ang = 2f * F_PI * revolutions * t;
            c = (float)Math.Cos(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);
            s = (float)Math.Sin(ang) * MathHelper.Lerp(radiusStart, radiusEnd, t);

            point.Position = new Vector3(
                MathHelper.Lerp(0, prim.PathShearX, s) + MathHelper.Lerp(-skew, skew, t) * 0.5f,
                c + MathHelper.Lerp(0, prim.PathShearY, s),
                s);
            point.Scale.X = holeX * MathHelper.Lerp(taperXBegin, taperXEnd, t);
            point.Scale.Y = holeY * MathHelper.Lerp(taperYBegin, taperYEnd, t);
            point.TexT = t;

            // Twist rotates the path along the x,y plane
            twist = Quaternion.CreateFromAxisAngle(MathHelper.Lerp(twistBegin, twistEnd, t) * 2f * F_PI - F_PI, 0f, 0f, 1f);
            qang = Quaternion.CreateFromAxisAngle(pathAxis, ang);
            point.Rotation = twist * qang;

            path.Points.Add(point);

            return path;
        }
示例#7
0
        private static List<Face> CreateVolumeFaces(Primitive prim, Path path,
            Profile profile, List<Vertex> vertices)
        {
            int numFaces = profile.Faces.Count;
            List<Face> faces = new List<Face>(numFaces);

            // Initialize faces with parameter data
            for (int i = 0; i < numFaces; i++)
            {
                ProfileFace pf = profile.Faces[i];

                Face face = new Face();
                face.Vertices = new List<Vertex>();
                face.Indices = new List<ushort>();
                face.Edge = new List<int>();

                face.BeginS = pf.Index;
                face.NumS = pf.Count;
                face.BeginT = 0;
                face.NumT = path.Points.Count;
                face.ID = i;

                // Set the type mask bits correctly
                if (prim.Data.ProfileHollow > 0f)
                    face.Mask |= FaceMask.Hollow;
                if (profile.Open)
                    face.Mask |= FaceMask.Open;
                if (pf.Cap)
                {
                    face.Mask |= FaceMask.Cap;
                    if (pf.Type == FaceType.PathBegin)
                        face.Mask |= FaceMask.Top;
                    else
                        face.Mask |= FaceMask.Bottom;
                }
                else if (pf.Type == FaceType.ProfileBegin || pf.Type == FaceType.ProfileEnd)
                {
                    face.Mask |= FaceMask.Flat;
                    face.Mask |= FaceMask.End;
                }
                else
                {
                    face.Mask |= FaceMask.Side;

                    if (pf.Flat)
                        face.Mask |= FaceMask.Flat;

                    if (pf.Type == FaceType.InnerSide)
                    {
                        face.Mask |= FaceMask.Inner;
                        if (pf.Flat && face.NumS > 2)
                            face.NumS *= 2; // Flat inner faces have to copy vert normals
                    }
                    else
                    {
                        face.Mask |= FaceMask.Outer;
                    }
                }

                faces.Add(face);
            }

            for (int i = 0; i < faces.Count; i++)
            {
                Face face = faces[i];
                BuildFace(ref face, prim.Data, vertices, path, profile, prim.Textures.GetFace((uint)i));
                faces[i] = face;
            }

            return faces;
        }
示例#8
0
        private static Profile GenerateProfile(LLObject.ObjectData prim, Path path, float detail)
        {
            Profile profile;

            if (detail < (float)MIN_LOD)
                detail = (float)MIN_LOD;

            // Generate the face data
            int i;
            float begin = prim.ProfileBegin;
            float end = prim.ProfileEnd;
            float hollow = prim.ProfileHollow;

            // Sanity check
            if (begin > end - 0.01f)
                begin = end - 0.01f;

            int faceNum = 0;

            switch (prim.ProfileCurve)
            {
                #region Squares
                case LLObject.ProfileCurve.Square:
                    {
                        profile = GenerateProfilePolygon(prim, 4, -0.375f, 1f);

                        #region Create Faces

                        if (path.Open)
                            profile.Faces.Add(CreateProfileCap(FaceType.PathBegin, profile.Positions.Count));

                        int iBegin = (int)Math.Floor(begin * 4f);
                        int iEnd = (int)Math.Floor(end * 4f + 0.999f);

                        for (i = iBegin; i < iEnd; i++)
                        {
                            FaceType type = (FaceType)((ushort)FaceType.OuterSide0 << i);
                            profile.Faces.Add(CreateProfileFace(faceNum++, 2, 1f, type, true));
                        }

                        #endregion Create Faces

                        for (i = 0; i < profile.Positions.Count; i++)
                        {
                            // Scale by 4 to generate proper tex coords
                            Vector3 point = profile.Positions[i];
                            point.Z *= 4f;
                            profile.Positions[i] = point;
                        }

                        if (hollow > 0f)
                        {
                            switch (prim.ProfileHole)
                            {
                                case LLObject.HoleType.Triangle:
                                    // This is the wrong offset, but it is what the official viewer uses
                                    GenerateProfileHole(prim, ref profile, true, 3f, -0.375f, hollow, 1f);
                                    break;
                                case LLObject.HoleType.Circle:
                                    // TODO: Compute actual detail levels for cubes
                                    GenerateProfileHole(prim, ref profile, false, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1f);
                                    break;
                                case LLObject.HoleType.Same:
                                case LLObject.HoleType.Square:
                                default:
                                    GenerateProfileHole(prim, ref profile, true, 4, -0.375f, hollow, 1f);
                                    break;
                            }
                        }
                    }
                    break;
                #endregion Squares
                #region Triangles
                case LLObject.ProfileCurve.IsoTriangle:
                case LLObject.ProfileCurve.RightTriangle:
                case LLObject.ProfileCurve.EqualTriangle:
                    {
                        profile = GenerateProfilePolygon(prim, 3, 0f, 1f);

                        #region Create Faces

                        if (path.Open)
                            profile.Faces.Add(CreateProfileCap(FaceType.PathBegin, profile.Positions.Count));

                        int iBegin = (int)Math.Floor(begin * 3f);
                        int iEnd = (int)Math.Floor(end * 3f + 0.999f);

                        for (i = iBegin; i < iEnd; i++)
                        {
                            FaceType type = (FaceType)((ushort)FaceType.OuterSide0 << i);
                            profile.Faces.Add(CreateProfileFace(faceNum++, 2, 1f, type, true));
                        }

                        #endregion Create Faces

                        for (i = 0; i < profile.Positions.Count; i++)
                        {
                            // Scale by 3 to generate proper tex coords
                            Vector3 point = profile.Positions[i];
                            point.Z *= 3f;
                            profile.Positions[i] = point;
                        }

                        if (hollow > 0f)
                        {
                            // Swept triangles need smaller hollowness values,
                            // because the triangle doesn't fill the bounding box
                            float triangleHollow = hollow / 2f;

                            switch (prim.ProfileHole)
                            {
                                case LLObject.HoleType.Circle:
                                    GenerateProfileHole(prim, ref profile, false, MIN_DETAIL_FACES * detail, 0f, triangleHollow, 1f);
                                    break;
                                case LLObject.HoleType.Square:
                                    GenerateProfileHole(prim, ref profile, true, 4f, 0f, triangleHollow, 1f);
                                    break;
                                case LLObject.HoleType.Same:
                                case LLObject.HoleType.Triangle:
                                default:
                                    GenerateProfileHole(prim, ref profile, true, 3f, 0f, triangleHollow, 1f);
                                    break;
                            }
                        }
                    }
                    break;
                #endregion Triangles
                #region Circles
                case LLObject.ProfileCurve.Circle:
                    {
                        float circleDetail = MIN_DETAIL_FACES * detail;

                        // If this has a square hollow, we should adjust the
                        // number of faces a bit so that the geometry lines up
                        if (hollow > 0f && prim.ProfileHole == LLObject.HoleType.Square)
                        {
                            // Snap to the next multiple of four sides,
                            // so that corners line up
                            circleDetail = (float)Math.Ceiling(circleDetail / 4f) * 4f;
                        }

                        int sides = (int)circleDetail;

                        // FIXME: Handle sculpted prims at some point
                        //if (is_sculpted)
                        //    sides = sculpt_sides(detail);

                        profile = GenerateProfilePolygon(prim, sides, 0f, 1f);

                        #region Create Faces

                        if (path.Open)
                            profile.Faces.Add(CreateProfileCap(FaceType.PathBegin, profile.Positions.Count));

                        if (profile.Open && prim.ProfileHollow == 0f)
                            profile.Faces.Add(CreateProfileFace(0, profile.Positions.Count - 1, 0f, FaceType.OuterSide0, false));
                        else
                            profile.Faces.Add(CreateProfileFace(0, profile.Positions.Count, 0f, FaceType.OuterSide0, false));

                        #endregion Create Faces

                        if (hollow > 0f)
                        {
                            switch (prim.ProfileHole)
                            {
                                case LLObject.HoleType.Square:
                                    GenerateProfileHole(prim, ref profile, true, 4f, 0f, hollow, 1f);
                                    break;
                                case LLObject.HoleType.Triangle:
                                    GenerateProfileHole(prim, ref profile, true, 3f, 0f, hollow, 1f);
                                    break;
                                case LLObject.HoleType.Circle:
                                case LLObject.HoleType.Same:
                                default:
                                    GenerateProfileHole(prim, ref profile, false, circleDetail, 0f, hollow, 1f);
                                    break;
                            }
                        }
                    }
                    break;
                #endregion Circles
                #region HalfCircles
                case LLObject.ProfileCurve.HalfCircle:
                    {
                        // Number of faces is cut in half because it's only a half-circle
                        float circleDetail = MIN_DETAIL_FACES * detail * 0.5f;

                        // If this has a square hollow, we should adjust the
                        // number of faces a bit so that the geometry lines up
                        if (hollow > 0f && prim.ProfileHole == LLObject.HoleType.Square)
                        {
                            // Snap to the next multiple of four sides (div 2),
                            // so that corners line up
                            circleDetail = (float)Math.Ceiling(circleDetail / 2f) * 2f;
                        }

                        profile = GenerateProfilePolygon(prim, (int)Math.Floor(circleDetail), 0.5f, 0.5f);

                        #region Create Faces

                        if (path.Open)
                            profile.Faces.Add(CreateProfileCap(FaceType.PathBegin, profile.Positions.Count));

                        if (profile.Open && prim.ProfileHollow == 0f)
                            profile.Faces.Add(CreateProfileFace(0, profile.Positions.Count - 1, 0f, FaceType.OuterSide0, false));
                        else
                            profile.Faces.Add(CreateProfileFace(0, profile.Positions.Count, 0f, FaceType.OuterSide0, false));

                        #endregion Create Faces

                        if (hollow > 0f)
                        {
                            switch (prim.ProfileHole)
                            {
                                case LLObject.HoleType.Square:
                                    GenerateProfileHole(prim, ref profile, true, 2f, 0.5f, hollow, 0.5f);
                                    break;
                                case LLObject.HoleType.Triangle:
                                    GenerateProfileHole(prim, ref profile, true, 3f, 0.5f, hollow, 0.5f);
                                    break;
                                case LLObject.HoleType.Circle:
                                case LLObject.HoleType.Same:
                                default:
                                    GenerateProfileHole(prim, ref profile, false, circleDetail, 0.5f, hollow, 0.5f);
                                    break;
                            }
                        }

                        // Special case for openness of sphere
                        if (prim.ProfileEnd - prim.ProfileEnd < 1f)
                        {
                            profile.Open = true;
                        }
                        else if (hollow == 0f)
                        {
                            profile.Open = false;
                            Vector3 first = profile.Positions[0];
                            profile.Positions.Add(first);
                        }
                    }
                    break;
                #endregion HalfCircles
                default:
                    throw new RenderingException("Unknown profile curve type " + prim.ProfileCurve.ToString());
            }

            // Bottom cap
            if (path.Open)
                profile.Faces.Add(CreateProfileCap(FaceType.PathEnd, profile.Positions.Count));

            if (profile.Open)
            {
                // Interior edge caps
                profile.Faces.Add(CreateProfileFace(profile.Positions.Count - 1, 2, 0.5f, FaceType.ProfileBegin, true));

                if (prim.ProfileHollow > 0f)
                    profile.Faces.Add(CreateProfileFace(profile.TotalOutsidePoints - 1, 2, 0.5f, FaceType.ProfileEnd, true));
                else
                    profile.Faces.Add(CreateProfileFace(profile.Positions.Count - 2, 2, 0.5f, FaceType.ProfileEnd, true));
            }

            return profile;
        }
示例#9
0
        private static List<ushort> GenerateIndices(LLObject.ObjectData prim, Path path, Profile profile)
        {
            bool open = profile.Open;
            bool hollow = (prim.ProfileHollow > 0f);
            int sizeS = profile.Positions.Count;
            int sizeSOut = profile.TotalOutsidePoints;
            int sizeT = path.Points.Count;
            int s, t, i;
            List<ushort> indices = new List<ushort>();

            if (open)
            {
                if (hollow)
                {
                    // Open hollow -- much like the closed solid, except we 
                    // we need to stitch up the gap between s=0 and s=size_s-1
                    for (t = 0; t < sizeT - 1; t++)
                    {
                        // The outer face, first cut, and inner face
                        for (s = 0; s < sizeS - 1; s++)
                        {
                            i = s + t * sizeS;
                            indices.Add((ushort)i); // x,y
                            indices.Add((ushort)(i + 1)); // x+1,y
                            indices.Add((ushort)(i + sizeS)); // x,y+1

                            indices.Add((ushort)(i + sizeS)); // x,y+1
                            indices.Add((ushort)(i + 1)); // x+1,y
                            indices.Add((ushort)(i + sizeS + 1)); // x+1,y+1
                        }

                        // The other cut face
                        indices.Add((ushort)(s + t * sizeS)); // x,y
                        indices.Add((ushort)(0 + t * sizeS)); // x+1,y
                        indices.Add((ushort)(s + (t + 1) * sizeS)); // x,y+1

                        indices.Add((ushort)(s + (t + 1) * sizeS)); // x,y+1
                        indices.Add((ushort)(0 + t * sizeS)); // x+1,y
                        indices.Add((ushort)(0 + (t + 1) * sizeS)); // x+1,y+1
                    }

                    // Do the top and bottom caps, if necessary
                    if (path.Open)
                    {
                        // Top cap
                        int pt1 = 0;
                        int pt2 = sizeS - 1;
                        i = (sizeT - 1) * sizeS;

                        while (pt2 - pt1 > 1)
                        {
                            if (use_tri_1a2(profile, pt1, pt2))
                            {
                                indices.Add((ushort)(pt1 + i));
                                indices.Add((ushort)(pt1 + 1 + i));
                                indices.Add((ushort)(pt2 + i));
                                pt1++;
                            }
                            else
                            {
                                indices.Add((ushort)(pt1 + i));
                                indices.Add((ushort)(pt2 - 1 + i));
                                indices.Add((ushort)(pt2 + i));
                                pt2--;
                            }
                        }

                        // Bottom cap
                        pt1 = 0;
                        pt2 = sizeS - 1;

                        while (pt2 - pt1 > 1)
                        {
                            if (use_tri_1a2(profile, pt1, pt2))
                            {
                                indices.Add((ushort)pt1);
                                indices.Add((ushort)pt2);
                                indices.Add((ushort)(pt1 + 1));
                                pt1++;
                            }
                            else
                            {
                                indices.Add((ushort)pt1);
                                indices.Add((ushort)pt2);
                                indices.Add((ushort)(pt2 - 1));
                                pt2--;
                            }
                        }
                    }
                }
                else
                {
                    // Open solid
                    for (t = 0; t < sizeT - 1; t++)
                    {
                        // Outer face + 1 cut face
                        for (s = 0; s < sizeS - 1; s++)
                        {
                            i = s + t * sizeS;

                            indices.Add((ushort)i); // x,y
                            indices.Add((ushort)(i + 1)); // x+1,y
                            indices.Add((ushort)(i + sizeS)); // x,y+1

                            indices.Add((ushort)(i + sizeS)); // x,y+1
                            indices.Add((ushort)(i + 1)); // x+1,y
                            indices.Add((ushort)(i + sizeS + 1)); // x+1,y+1
                        }

                        // The other cut face
                        indices.Add((ushort)((sizeS - 1) + (t * sizeS))); // x,y
                        indices.Add((ushort)(0 + t * sizeS)); // x+1,y
                        indices.Add((ushort)((sizeS - 1) + (t + 1) * sizeS)); // x,y+1

                        indices.Add((ushort)((sizeS - 1) + (t + 1) * sizeS)); // x,y+1
                        indices.Add((ushort)(0 + (t * sizeS))); // x+1,y
                        indices.Add((ushort)(0 + (t + 1) * sizeS)); // x+1,y+1
                    }

                    // Do the top and bottom caps, if necessary
                    if (path.Open)
                    {
                        for (s = 0; s < sizeS - 2; s++)
                        {
                            indices.Add((ushort)(s + 1));
                            indices.Add((ushort)s);
                            indices.Add((ushort)(sizeS - 1));
                        }

                        // We've got a top cap
                        int offset = (sizeT - 1) * sizeS;

                        for (s = 0; s < sizeS - 2; s++)
                        {
                            // Inverted ordering from bottom cap
                            indices.Add((ushort)(offset + sizeS - 1));
                            indices.Add((ushort)(offset + s));
                            indices.Add((ushort)(offset + s + 1));
                        }
                    }
                }
            }
            else if (hollow)
            {
                // Closed hollow
                // Outer face
                for (t = 0; t < sizeT - 1; t++)
                {
                    for (s = 0; s < sizeSOut - 1; s++)
                    {
                        i = s + t * sizeS;

                        indices.Add((ushort)i); // x,y
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + sizeS)); // x,y+1

                        indices.Add((ushort)(i + sizeS)); // x,y+1
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + 1 + sizeS)); // x+1,y+1
                    }
                }

                // Inner face
                // Invert facing from outer face
                for (t = 0; t < sizeT - 1; t++)
                {
                    for (s = sizeSOut; s < sizeS - 1; s++)
                    {
                        i = s + t * sizeS;

                        indices.Add((ushort)i); // x,y
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + sizeS)); // x,y+1

                        indices.Add((ushort)(i + sizeS)); // x,y+1
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + 1 + sizeS)); // x+1,y+1
                    }
                }

                // Do the top and bottom caps, if necessary
                if (path.Open)
                {
                    // Top cap
                    int pt1 = 0;
                    int pt2 = sizeS - 1;
                    i = (sizeT - 1) * sizeS;

                    while (pt2 - pt1 > 1)
                    {
                        if (use_tri_1a2(profile, pt1, pt2))
                        {
                            indices.Add((ushort)(pt1 + i));
                            indices.Add((ushort)(pt2 + 1 + i));
                            indices.Add((ushort)(pt2 + i));
                            pt1++;
                        }
                        else
                        {
                            indices.Add((ushort)(pt1 + i));
                            indices.Add((ushort)(pt2 - 1 + i));
                            indices.Add((ushort)(pt2 + i));
                            pt2--;
                        }
                    }

                    // Bottom cap
                    pt1 = 0;
                    pt2 = sizeS - 1;

                    while (pt2 - pt1 > 1)
                    {
                        if (use_tri_1a2(profile, pt1, pt2))
                        {
                            indices.Add((ushort)pt1);
                            indices.Add((ushort)pt2);
                            indices.Add((ushort)(pt1 + 1));
                            pt1++;
                        }
                        else
                        {
                            indices.Add((ushort)pt1);
                            indices.Add((ushort)pt2);
                            indices.Add((ushort)(pt2 - 1));
                            pt2--;
                        }
                    }
                }
            }
            else
            {
                // Closed solid. Easy case
                for (t = 0; t < sizeT - 1; t++)
                {
                    for (s = 0; s < sizeS - 1; s++)
                    {
                        // Should wrap properly, but for now...
                        i = s + t * sizeS;

                        indices.Add((ushort)i); // x,y
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + sizeS)); // x,y+1

                        indices.Add((ushort)(i + sizeS)); // x,y+1
                        indices.Add((ushort)(i + 1)); // x+1,y
                        indices.Add((ushort)(i + sizeS + 1)); // x+1,y+1
                    }
                }

                // Do the top and bottom caps, if necessary
                if (path.Open)
                {
                    // Bottom cap
                    for (s = 1; s < sizeS - 2; s++)
                    {
                        indices.Add((ushort)(s + 1));
                        indices.Add((ushort)s);
                        indices.Add((ushort)0);
                    }

                    // Top cap
                    int offset = (sizeT - 1) * sizeS;
                    for (s = 1; s < sizeS - 2; s++)
                    {
                        // Inverted ordering from bottom cap
                        indices.Add((ushort)offset);
                        indices.Add((ushort)(offset + s));
                        indices.Add((ushort)(offset + s + 1));
                    }
                }
            }

            return indices;
        }
示例#10
0
        private static List<Vertex> GenerateVertices(LLObject.ObjectData prim, float detail, Path path, Profile profile)
        {
            int sizeS = path.Points.Count;
            int sizeT = profile.Positions.Count;

            // Generate vertex positions
            List<Vertex> vertices = new List<Vertex>(sizeT * sizeS);
            for (int i = 0; i < sizeT * sizeS; i++)
                vertices.Add(new Vertex());

            // Run along the path
            for (int s = 0; s < sizeS; ++s)
            {
                Vector2 scale = path.Points[s].Scale;
                Quaternion rot = path.Points[s].Rotation;
                Vector3 pos = path.Points[s].Position;

                // Run along the profile
                for (int t = 0; t < sizeT; ++t)
                {
                    int m = s * sizeT + t;
                    Vertex vertex = vertices[m];

                    vertex.Position.X = profile.Positions[t].X * scale.X;
                    vertex.Position.Y = profile.Positions[t].Y * scale.Y;
                    vertex.Position.Z = 0f;

                    vertex.Position *= rot;
                    vertex.Position += pos;

                    vertices[m] = vertex;
                }
            }

            return vertices;
        }