示例#1
0
        public static void CropMatrixToStructure(Matrix m, StructureMeta contour, double marginMM)
        {
            var allPoints = contour.SliceContours.SelectMany(sc => sc.ContourPoints).ToList();
            var minPointX = allPoints.Min(pt => pt.X) - marginMM;
            var maxPointX = allPoints.Max(pt => pt.X) + marginMM;
            var minPointY = allPoints.Min(pt => pt.Y) - marginMM;
            var maxPointY = allPoints.Max(pt => pt.Y) + marginMM;
            var minPointZ = contour.SliceContours.Min(sc => sc.Z) - marginMM;
            var maxPointZ = contour.SliceContours.Max(sc => sc.Z) + marginMM;

            var minCorner = new Point3d(minPointX, minPointY, minPointZ);
            var maxCorner = new Point3d(maxPointX, maxPointY, maxPointZ);

            var imageCoordMinCorner = m.PatientTransformMatrix.Inv().ToMat().TransformPoint3d(minCorner);
            var imageCoordMaxCorner = m.PatientTransformMatrix.Inv().ToMat().TransformPoint3d(maxCorner);

            var minX = (int)Math.Floor(Math.Min(imageCoordMinCorner.X, imageCoordMaxCorner.X));

            minX = minX < 0 ? 0 : minX;
            var minY = (int)Math.Floor(Math.Min(imageCoordMinCorner.Y, imageCoordMaxCorner.Y));

            minY = minY < 0 ? 0 : minY;
            var minZ = (int)Math.Floor(Math.Min(imageCoordMinCorner.Z, imageCoordMaxCorner.Z));

            minZ = minZ < 0 ? 0 : minZ;

            var maxX = (int)Math.Ceiling(Math.Max(imageCoordMinCorner.X, imageCoordMaxCorner.X));

            maxX = maxX > (m.DimensionX - 1) ? m.DimensionX : maxX;
            var maxY = (int)Math.Ceiling(Math.Max(imageCoordMinCorner.Y, imageCoordMaxCorner.Y));

            maxY = maxY > (m.DimensionY - 1) ? m.DimensionY : maxY;
            var maxZ = (int)Math.Ceiling(Math.Max(imageCoordMinCorner.Z, imageCoordMaxCorner.Z));

            maxZ = maxZ > (m.DimensionZ - 1) ? m.DimensionZ : maxZ;

            var rangeX = new OpenCvSharp.Range(minX, maxX);
            var rangeY = new OpenCvSharp.Range(minY, maxY);
            var rangeZ = new OpenCvSharp.Range(minZ, maxZ);

            using (var cropped = new Mat(m._mat, rangeZ, rangeY, rangeX))
            {
                m.DimensionX = maxX - minX;
                m.DimensionY = maxY - minY;
                m.DimensionZ = maxZ - minZ;

                var xOffset  = minX * m.XRes;
                var yOffset  = minY * m.YRes;
                var zOffset  = minZ * m.ZRes;
                var txOffset = Transform.TransformOffset(new Vector3(xOffset, yOffset, zOffset), m.ImageOrientation);
                m.Origin = m.Origin + txOffset;

                var mat = cropped.Clone();
                m._mat.Dispose();
                m._mat = mat;
                m.CalculatePatientTransformMatrix();
                m.CalculateBounds();
            }
        }
示例#2
0
文件: Matrix.cs 项目: zzti/Evil-DICOM
        public void SetZPlaneBySlice(Mat insert, int z)
        {
            var rangeX = OpenCvSharp.Range.All;
            var rangeY = OpenCvSharp.Range.All;
            var rangeZ = new OpenCvSharp.Range(z, z + 1);

            using (var slice = new Mat(_mat, rangeZ, rangeY, rangeX))
            {
                using (var slice2D = slice.Reshape(_mat.Channels(), new int[] { DimensionY, DimensionX }))
                {
                    insert.CopyTo(slice2D);
                }
            }
        }
示例#3
0
文件: Matrix.cs 项目: zzti/Evil-DICOM
        public Mat GetYPlaneBySlice(int y)
        {
            var rangeX = OpenCvSharp.Range.All;
            var rangeY = new OpenCvSharp.Range(y, y + 1);
            var rangeZ = OpenCvSharp.Range.All;

            using (var slice = new Mat(_mat, rangeZ, rangeY, rangeX).Clone())
            {
                using (var slice2D = slice.Reshape(_mat.Channels(), new int[] { DimensionZ, DimensionX }))
                {
                    return(slice2D.Clone());
                }
            }
        }
示例#4
0
文件: Matrix.cs 项目: zzti/Evil-DICOM
        public Mat GetZPlaneBySlice(int z)
        {
            var rangeX = OpenCvSharp.Range.All;
            var rangeY = OpenCvSharp.Range.All;
            var rangeZ = new OpenCvSharp.Range(z, z + 1);

            var clone = new Mat();

            using (var slice = new Mat(_mat, rangeZ, rangeY, rangeX).Clone())
            {
                using (var slice2D = slice.Reshape(_mat.Channels(), new int[] { DimensionY, DimensionX }))
                {
                    clone = slice2D.Clone();
                }
            }
            return(clone);
        }
 /// <summary>
 /// Sets a matrix header for the specified matrix row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <param name="value"></param>
 /// <returns></returns>
 public void Set(Range range, MatExpr value)
 {
     this[range] = value;
 }
示例#6
0
        public static int FindMaxValueIndexInRange <T>(this Mat inputMatrix, int dim0Index, Range dim1Range) where T : unmanaged, IComparable <T>
        {
            if (inputMatrix is null)
            {
                throw new ArgumentNullException(nameof(inputMatrix));
            }

            int dim1MaxIndex = -1;
            T   dim1MaxValue = default;

            for (int dim1Index = dim1Range.Start; dim1Index <= dim1Range.End; dim1Index++)
            {
                var curValue = inputMatrix.At <T>(dim0Index, dim1Index);
                if (curValue.CompareTo(dim1MaxValue) > 0)
                {
                    dim1MaxIndex = dim1Index;
                    dim1MaxValue = curValue;
                }
            }
            return(dim1MaxIndex);
        }
 public static extern IntPtr core_Mat_new5(IntPtr mat, Range rowRange);
 /// <summary>
 /// Creates a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="rowRange"></param>
 /// <param name="colRange"></param>
 /// <returns></returns>
 public MatExpr Get(Range rowRange, Range colRange)
 {
     return this[rowRange, colRange];
 }
 /// <summary>
 /// Sets a matrix header for the specified matrix row/column span.
 /// </summary>
 /// <param name="rowRange"></param>
 /// <param name="colRange"></param>
 /// <param name="value"></param>
 /// <returns></returns>
 public void Set(Range rowRange, Range colRange, MatExpr value)
 {
     this[rowRange, colRange] = value;
 }
示例#10
0
 /// <summary>
 /// 
 /// </summary>
 /// <param name="rowRange"></param>
 /// <param name="colRange"></param>
 /// <returns></returns>
 public MatExpr this[Range rowRange, Range colRange]
 {
     get
     {
         return SubMat(rowRange, colRange);
     }
     set
     {
         if (value == null)
             throw new ArgumentNullException("value");
         MatExpr subMatExpr = SubMat(rowRange, colRange);
         NativeMethods.core_Mat_assignment_FromMatExpr(subMatExpr.CvPtr, value.CvPtr);
     }
 }
示例#11
0
 /// <summary>
 /// Creates/Sets a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <param name="value"></param>
 public virtual void Set(Range range, Mat value)
 {
     this[range.Start, range.End] = value; 
 }
 public static extern IntPtr cuda_GpuMat_opRange2(IntPtr src, Range rowRange, Range colRange);
 public static extern IntPtr cuda_GpuMat_new9(IntPtr m, Range rowRange, Range colRange);
        private IList <DnnDetectedObject[]> ExtractYoloBatchedResults(IEnumerable <Mat> output, IEnumerable <Mat> image, float threshold, float nmsThreshold, bool nms = true)
        {
            var inputImages = image.ToList();

            DnnDetectedObject[][] results = new DnnDetectedObject[inputImages.Count][];


            for (int inputIndex = 0; inputIndex < inputImages.Count; inputIndex++)
            {
                //for nms
                _classIds.Clear();
                _confidences.Clear();
                _probabilities.Clear();
                _boxes.Clear();

                var w = inputImages[inputIndex].Width;
                var h = inputImages[inputIndex].Height;

                /*
                 * YOLO3 COCO trainval output
                 * 0 1 : center                    2 3 : w/h
                 * 4 : confidence                  5 ~ 84 : class probability
                 */
                const int prefix = 5;   //skip 0~4

                foreach (var prob in output)
                {
                    //dimensions will be 2 for single image analysis and 3 for batch analysis
                    //2 input Prob Dims:3 images: 0 - 2, 1 - 300, 2 - 85

                    var probabilitiesRange = new Range(prefix, prob.Size(2) - 1);

                    for (var i = 0; i < prob.Size(1); i++)
                    {
                        var confidence = prob.At <float>(inputIndex, i, 4);

                        //Filter out bogus results of > 100% confidence
                        if (confidence > threshold && confidence <= 1.0)
                        {
                            var maxProbIndex = prob.FindMaxValueIndexInRange <float>(inputIndex, i, probabilitiesRange);

                            if (maxProbIndex == -1)
                            {
                                continue;
                            }

                            var probability = prob.At <float>(inputIndex, i, maxProbIndex);

                            if (probability > threshold) //more accuracy, you can cancel it
                            {
                                //get center and width/height
                                var centerX = prob.At <float>(inputIndex, i, 0) * w;
                                var centerY = prob.At <float>(inputIndex, i, 1) * h;
                                var width   = prob.At <float>(inputIndex, i, 2) * w;
                                var height  = prob.At <float>(inputIndex, i, 3) * h;

                                float X = Math.Max(0, centerX - (width / 2.0f));
                                float Y = Math.Max(0, centerY - (height / 2.0f));

                                //put data to list for NMSBoxes
                                _classIds.Add(maxProbIndex - prefix);
                                _confidences.Add(confidence);
                                _probabilities.Add(probability);
                                _boxes.Add(new Rect2d(X, Y, width, height));
                            }
                        }
                    }
                }

                results[inputIndex] = OptimizeDetections(threshold, nmsThreshold, nms).ToArray();
            }

            return(results);
        }
 /// <summary>
 /// Creates a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <returns></returns>
 public virtual MatExpr this[Range range]
 {
     get { return this[range.Start, range.End]; }
     set { this[range.Start, range.End] = value; }
 }
示例#16
0
 /// <summary>
 /// Creates/Sets a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <returns></returns>
 public virtual Mat this[Range range]
 {
     get { return this[range.Start, range.End]; }
 }
 /// <summary>
 /// Creates a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <returns></returns>
 public MatExpr Get(Range range)
 {
     return this[range];
 }
示例#18
0
 /// <summary>
 /// Creates a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="range"></param>
 /// <returns></returns>
 public virtual Mat Get(Range range)
 {
     return this[range];
 }
示例#19
0
 /// <summary>
 /// 
 /// </summary>
 /// <param name="rowRange"></param>
 /// <param name="colRange"></param>
 /// <returns></returns>
 public MatExpr SubMat(Range rowRange, Range colRange)
 {
     return SubMat(rowRange.Start, rowRange.End, colRange.Start, colRange.End);
 }
 public static extern IntPtr core_Mat_subMa2t(IntPtr self, int nRanges, Range[] ranges);
示例#21
0
 /// <summary>
 /// Creates a matrix header for the specified row/column span.
 /// </summary>
 /// <param name="rowRange"></param>
 /// <param name="colRange"></param>
 /// <returns></returns>
 public abstract MatExpr this[Range rowRange, Range colRange] { get; set; }
 public static extern IntPtr core_Mat_new4(IntPtr mat, Range rowRange, Range colRange);
        private DnnDetectedObject[][] ExtractYolo3SingleResults(IEnumerable <Mat> output, Mat image, float threshold, float nmsThreshold, bool nms = true)
        {
            DnnDetectedObject[][] results = new DnnDetectedObject[1][];

            var classIds      = new List <int>();
            var confidences   = new List <float>();
            var probabilities = new List <float>();
            var boxes         = new List <Rect2d>();

            //for nms
            classIds.Clear();
            confidences.Clear();
            probabilities.Clear();
            boxes.Clear();

            var w = image.Width;
            var h = image.Height;

            /*
             * YOLO3 COCO trainval output
             * 0 1 : center                    2 3 : w/h
             * 4 : confidence                  5 ~ 84 : class probability
             */
            const int prefix = 5;   //skip 0~4

            foreach (var prob in output)
            {
                //dimensions will be 2 for single image analysis and 3 for batch analysis
                //1 input Prob Dims:2 images: 0 - 300, 1 - 85

                for (var i = 0; i < prob.Size(0); i++)
                {
                    var confidence = prob.At <float>(i, 4);

                    //Filter out bogus results of > 100% confidence
                    if (confidence > threshold && confidence <= 1.0)
                    {
                        var colRange = new Range(prefix, prob.Size(1) - 1);

                        var maxProbIndex = prob.FindMaxValueIndexInRange <float>(i, colRange);

                        if (maxProbIndex == -1)
                        {
                            continue;
                        }

                        var probability = prob.At <float>(i, maxProbIndex);

                        if (probability > threshold) //more accuracy, you can cancel it
                        {
                            //get center and width/height
                            var centerX = prob.At <float>(i, 0) * w;
                            var centerY = prob.At <float>(i, 1) * h;
                            var width   = prob.At <float>(i, 2) * w;
                            var height  = prob.At <float>(i, 3) * h;

                            float X = Math.Max(0, centerX - (width / 2.0f));
                            float Y = Math.Max(0, centerY - (height / 2.0f));

                            //put data to list for NMSBoxes
                            classIds.Add(maxProbIndex - prefix);
                            confidences.Add(confidence);
                            probabilities.Add(probability);
                            boxes.Add(new Rect2d(X, Y, width, height));
                        }
                    }
                }
            }

            List <DnnDetectedObject> result = OptimizeDetections(threshold, nmsThreshold, nms, classIds, confidences, probabilities, boxes);

            results[0] = result.ToArray();

            return(results);
        }
示例#24
0
        /// <summary>
        /// 他の行列の部分行列として初期化
        /// </summary>
        /// <param name="m">作成された行列に(全体的,部分的に)割り当てられる配列.
        /// これらのコンストラクタによってデータがコピーされる事はありません.
        /// 代わりに,データ m ,またはその部分配列を指し示すヘッダが作成され,
        /// 関連した参照カウンタがあれば,それがインクリメントされます.
        /// つまり,新しく作成された配列の内容を変更することで, m の対応する要素も
        /// 変更することになります.もし部分配列の独立したコピーが必要ならば,
        /// Mat.Clone() を利用してください.</param>
        /// <param name="rowRange">扱われる 行列の行の範囲.すべての行を扱う場合は,Range.All を利用してください.</param>
        /// <param name="colRange">扱われる 行列の列の範囲.すべての列を扱う場合は,Range.All を利用してください.</param>
#else
        /// <summary>
        /// creates a matrix header for a part of the bigger matrix
        /// </summary>
        /// <param name="m">Array that (as a whole or partly) is assigned to the constructed matrix.
        /// No data is copied by these constructors. Instead, the header pointing to m data or its sub-array
        /// is constructed and associated with it. The reference counter, if any, is incremented.
        /// So, when you modify the matrix formed using such a constructor, you also modify the corresponding elements of m .
        /// If you want to have an independent copy of the sub-array, use Mat::clone() .</param>
        /// <param name="rowRange">Range of the m rows to take. As usual, the range start is inclusive and the range end is exclusive.
        /// Use Range.All to take all the rows.</param>
        /// <param name="colRange">Range of the m columns to take. Use Range.All to take all the columns.</param>
#endif
        public MatOfDouble(MatOfDouble m, Range rowRange, Range?colRange = null)
            : base(m, rowRange, colRange)
        {
        }