示例#1
0
        /// <summary>
        /// バックプロジェクションにより肌色領域を求める
        /// </summary>
        /// <param name="imgSrc"></param>
        /// <param name="hsvPlanes"></param>
        /// <param name="imgRender"></param>
        private void RetrieveFleshRegion(IplImage imgSrc, IplImage[] hsvPlanes, IplImage imgDst)
        {
            int[] histSize = new int[] {30, 32};
            float[] hRanges = {0.0f, 20f};
            float[] sRanges = {50f, 255f};
            float[][] ranges = {hRanges, sRanges};

            imgDst.Zero();
            using (CvHistogram hist = new CvHistogram(histSize, HistogramFormat.Array, ranges, true))
            {
                hist.Calc(hsvPlanes, false, null);
                float minValue, maxValue;
                hist.GetMinMaxValue(out minValue, out maxValue);
                hist.Normalize(imgSrc.Width * imgSrc.Height * 255 / maxValue);
                hist.CalcBackProject(hsvPlanes, imgDst);
            }
        }
示例#2
0
    //  Takes an image and calculates its histogram for one channel.
    // Color images have 3 channels (4 if you count alpha?)
    // Webcam captures them in (R)ed, (G)reen, (B)lue.
    // Convert to (H)ue, (S)aturation (V)alue to get better separation for thresholding
    CvHistogram CalculateOneChannelHistogram(CvMat _image, int channelNum, float channelMax)
    {
        // Hue, Saturation, Value or HSV is a color model that describes colors (hue or tint)
        // in terms of their shade (saturation or amount of gray)
        //	and their brightness (value or luminance).
        // For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]

        if (channelNum > imColorChannels)
            Debug.LogError("Desired channel number " + channelNum + " is out of range.");

        float channelMin = 0;
        float[] channelRanges = new float[2] { channelMin, channelMax };

        float[][] ranges = { channelRanges };

        // Note: You don't need to use all 3 channels for the histogram.
        int channelBins = 32;  // Number of bins in the Hue histogram (more bins = narrower bins)

        // Number of bins per histogram channel
        // If we use all 3 channels (H, S, V) then the histogram will have 3 dimensions.
        int[] hist_size = new int[] { channelBins };

        CvHistogram hist = new CvHistogram(hist_size, HistogramFormat.Array, ranges, true);

        using (CvMat _imageHSV = ConvertToHSV(_image)) // Convert the image to HSV
        // We could keep the image in B, G, R, A if we wanted to.
        // Just split the channels into B, G, R planes

        using (CvMat imgChannel = new CvMat(_imageHSV.Rows, _imageHSV.Cols, MonoColorMatrix))
        {

            // Break image into H, S, V planes
            // If the image were BGR, then it would split into B, G, R planes respectively

            switch (channelNum)
            {
                case 0:
                    _imageHSV.CvtPixToPlane(imgChannel, null, null, null);  // Cv.Split also does this
                    break;
                case 1:
                    _imageHSV.CvtPixToPlane(null, imgChannel, null, null);  // Cv.Split also does this
                    break;
                case 2:
                    _imageHSV.CvtPixToPlane(null, null, imgChannel, null);  // Cv.Split also does this
                    break;
                default:
                    Debug.LogError("Channel is out of range");
                    _imageHSV.CvtPixToPlane(imgChannel, null, null, null);  // Cv.Split also does this
                    break;
            }

            hist.Calc(Cv.GetImage(imgChannel), false, null);  // Call hist function (no accumulatation, no mask)

        }

        return hist;  // Return the histogram
    }
示例#3
0
    //  Takes an image and calculates its histogram in HSV color space
    // Color images have 3 channels (4 if you count alpha?)
    // Webcam captures them in (R)ed, (G)reen, (B)lue.
    // Convert to (H)ue, (S)aturation (V)alue to get better separation for thresholding
    CvHistogram CalculateHSVHistogram(CvMat _image)
    {
        // Hue, Saturation, Value or HSV is a color model that describes colors (hue or tint)
        // in terms of their shade (saturation or amount of gray)
        //	and their brightness (value or luminance).
        // For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]

        // hue varies from 0 to 179, see cvtColor
        float hueMin = 0, hueMax = 179;
        float[] hueRanges = new float[2] { hueMin, hueMax };
        // saturation varies from 0 (black-gray-white) to
        // 255 (pure spectrum color)
        float satMin = 0, satMax = 255;
        float[] saturationRanges = new float[2] { satMin, satMax };

        float valMin = 0, valMax = 255;
        float[] valueRanges = new float[2] { valMin, valMax };

        float[][] ranges = { hueRanges, saturationRanges, valueRanges };

        // Note: You don't need to use all 3 channels for the histogram.
        int hueBins = 32;  // Number of bins in the Hue histogram (more bins = narrower bins)
        int satBins = 32; // Number of bins in the Saturation histogram (more bins = narrower bins)
        int valueBins = 8;  // Number of bins in the Value histogram (more bins = narrower bins)

        float maxValue = 0, minValue = 0;  // Minimum and maximum value of calculated histogram

        // Number of bins per histogram channel
        // If we use all 3 channels (H, S, V) then the histogram will have 3 dimensions.
        int[] hist_size = new int[] { hueBins, satBins, valueBins };

        CvHistogram hist = new CvHistogram(hist_size, HistogramFormat.Array, ranges, true);

        using (CvMat _imageHSV = ConvertToHSV(_image)) // Convert the image to HSV
        // We could keep the image in B, G, R, A if we wanted to.
        // Just split the channels into B, G, R planes

        using (CvMat imgH = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
        using (CvMat imgS = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
        using (CvMat imgV = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
        {

            // Break image into H, S, V planes
            // If the image were RGB, then it would split into R, G, B planes respectively
            _imageHSV.CvtPixToPlane(imgH, imgS, imgV, null);  // Cv.Split also does this

            // Store HSV planes as an IplImage array to pass to openCV's hist function
            IplImage[] hsvPlanes = { Cv.GetImage(imgH), Cv.GetImage(imgS), Cv.GetImage(imgV) };

            hist.Calc(hsvPlanes, false, null);  // Call hist function (no accumulatation, no mask)

            // Do we need to normalize??
            hist.GetMinMaxValue(out minValue, out maxValue);
            // Scale the histogram to unity height
            hist.Normalize(_imageHSV.Width * _imageHSV.Height * hist.Dim * hueMax / maxValue);

        }

        return hist;  // Return the histogram
    }
示例#4
0
 /// <summary>
 /// ヒストグラムの計算
 /// </summary>
 /// <param name="img"></param>
 /// <param name="hist"></param>
 private static void CalcHist(IplImage img, CvHistogram hist)
 {
     hist.Calc(img);
     float minValue, maxValue;
     hist.GetMinMaxValue(out minValue, out maxValue);
     Cv.Scale(hist.Bins, hist.Bins, ((double)img.Height) / maxValue, 0);
 }