示例#1
0
        /// <summary>
	    /// SVMを最適なパラメータで学習する
	    /// </summary>
	    /// <param name="train_data"></param>
	    /// <param name="responses"></param>
	    /// <param name="var_idx"></param>
	    /// <param name="sample_idx"></param>
	    /// <param name="params"></param>
	    /// <param name="k_fold">交差検定(Cross-validation)パラメータ.学習集合は,k_foldの部分集合に分割され,一つの部分集合がモデルの学習に用いられ,その他の部分集合はテスト集合となる.つまり,SVM アルゴリズムは,k_fold回実行される.</param>
	    /// <param name="C_grid"></param>
	    /// <param name="gamma_grid"></param>
	    /// <param name="p_grid"></param>
	    /// <param name="nu_grid"></param>
	    /// <param name="coef_grid"></param>
	    /// <param name="degree_grid"></param>
	    /// <returns></returns>
#else
		/// <summary>
	    /// Trains SVM with optimal parameters
	    /// </summary>
	    /// <param name="trainData"></param>
	    /// <param name="responses"></param>
	    /// <param name="varIdx"></param>
	    /// <param name="sampleIdx"></param>
	    /// <param name="params"></param>
	    /// <param name="kFold">Cross-validation parameter. The training set is divided into k_fold subsets, one subset being used to train the model, the others forming the test set. So, the SVM algorithm is executed k_fold times. </param>
	    /// <param name="cGrid"></param>
	    /// <param name="gammaGrid"></param>
	    /// <param name="pGrid"></param>
	    /// <param name="nuGrid"></param>
	    /// <param name="coefGrid"></param>
	    /// <param name="degreeGrid"></param>
	    /// <returns></returns>
#endif
        public virtual bool TrainAuto(CvMat trainData, CvMat responses, CvMat varIdx, CvMat sampleIdx, CvSVMParams @params, int kFold, 
            CvParamGrid cGrid, CvParamGrid gammaGrid, CvParamGrid pGrid, CvParamGrid nuGrid, CvParamGrid coefGrid, CvParamGrid degreeGrid)
        {
            if (trainData == null)
                throw new ArgumentNullException("trainData");
            if (responses == null)
                throw new ArgumentNullException("responses");

			if(@params == null)
				@params = new CvSVMParams();

            IntPtr varIdxPtr = (varIdx == null) ? IntPtr.Zero : varIdx.CvPtr;
            IntPtr sampleIdxPtr = (sampleIdx == null) ? IntPtr.Zero : sampleIdx.CvPtr;        
            
			return MLInvoke.CvSVM_train_auto(
                ptr,
                trainData.CvPtr,
                responses.CvPtr,
                varIdxPtr,
                sampleIdxPtr, 
				@params.NativeStruct, 
				kFold, 
				cGrid, 
				gammaGrid,
				pGrid,
				nuGrid,
				coefGrid,
				degreeGrid
			);
        }
示例#2
0
        /// <summary>
	    /// SVM パラメータのためのグリッドを生成する
	    /// </summary>
	    /// <param name="param_id"></param>
	    /// <returns></returns>
#else
		/// <summary>
	    /// Generates a grid for SVM parameters
	    /// </summary>
	    /// <param name="paramId"></param>
	    /// <returns></returns>
#endif
	    public static CvParamGrid GetDefaultGrid(SVMParamType paramId)
	    {
            CvParamGrid grid = new CvParamGrid();
			MLInvoke.CvSVM_get_default_grid(ref grid, (int)paramId);
            return grid;
	    }
示例#3
0
 public static extern bool CvParamGrid_check(CvParamGrid grid);
示例#4
0
 public static extern bool CvSVM_train_auto(IntPtr model, IntPtr _train_data, IntPtr _responses, IntPtr _var_idx, IntPtr _sample_idx, WCvSVMParams _params,
    int k_fold, CvParamGrid C_grid, CvParamGrid gamma_grid, CvParamGrid p_grid, CvParamGrid nu_grid, CvParamGrid coef_grid, CvParamGrid degree_grid);
示例#5
0
 public static extern void CvSVM_get_default_grid(ref CvParamGrid grid, int param_id);