public void DoOCR(CvKNearest kNearest, string path) { var src = Cv2.ImRead(path); Cv2.ImShow("Source", src); var gray = new Mat(); Cv2.CvtColor(src, gray, ColorConversion.BgrToGray); var threshImage = new Mat(); Cv2.Threshold(gray, threshImage, Thresh, ThresholdMaxVal, ThresholdType.BinaryInv); // Threshold to find contour Point[][] contours; HiearchyIndex[] hierarchyIndexes; Cv2.FindContours( threshImage, out contours, out hierarchyIndexes, mode: ContourRetrieval.CComp, method: ContourChain.ApproxSimple); if (contours.Length == 0) { throw new NotSupportedException("Couldn't find any object in the image."); } //Create input sample by contour finding and cropping var dst = new Mat(src.Rows, src.Cols, MatType.CV_8UC3, Scalar.All(0)); var contourIndex = 0; while ((contourIndex >= 0)) { var contour = contours[contourIndex]; var boundingRect = Cv2.BoundingRect(contour); //Find bounding rect for each contour Cv2.Rectangle(src, new Point(boundingRect.X, boundingRect.Y), new Point(boundingRect.X + boundingRect.Width, boundingRect.Y + boundingRect.Height), new Scalar(0, 0, 255), 2); var roi = new Mat(threshImage, boundingRect); //Crop the image var resizedImage = new Mat(); var resizedImageFloat = new Mat(); Cv2.Resize(roi, resizedImage, new Size(10, 10)); //resize to 10X10 resizedImage.ConvertTo(resizedImageFloat, MatType.CV_32FC1); //convert to float var result = resizedImageFloat.Reshape(1, 1); var results = new Mat(); var neighborResponses = new Mat(); var dists = new Mat(); var detectedClass = (int)kNearest.FindNearest(result, 1, results, neighborResponses, dists); //Console.WriteLine("DetectedClass: {0}", detectedClass); //Cv2.ImShow("roi", roi); //Cv.WaitKey(0); //Cv2.ImWrite(string.Format("det_{0}_{1}.png",detectedClass, contourIndex), roi); Cv2.PutText( dst, detectedClass.ToString(CultureInfo.InvariantCulture), new Point(boundingRect.X, boundingRect.Y + boundingRect.Height), 0, 1, new Scalar(0, 255, 0), 2); contourIndex = hierarchyIndexes[contourIndex].Next; } Cv2.ImShow("Segmented Source", src); Cv2.ImShow("Detected", dst); Cv2.ImWrite("dest.jpg", dst); Cv2.WaitKey(); }
public CvKNearest TrainData(IList<ImageInfo> trainingImages) { var samples = new Mat(); foreach (var trainingImage in trainingImages) { samples.PushBack(trainingImage.Image); } var labels = trainingImages.Select(x => x.ImageGroupId).ToArray(); var responses = new Mat(labels.Length, 1, MatType.CV_32SC1, labels); var tmp = responses.Reshape(1, 1); //make continuous var responseFloat = new Mat(); tmp.ConvertTo(responseFloat, MatType.CV_32FC1); // Convert to float var kNearest = new CvKNearest(); kNearest.Train(samples, responseFloat); // Train with sample and responses return kNearest; }