public static CarModelState ToCarModelState(GridCarModelState s)
 {
     CarModelState cms = new CarModelState();
     cms.Position = new PointD(Math.Cos(s.TargetAngle - s.TargetFinishAngle) * s.TargetDist, Math.Sin(s.TargetAngle - s.TargetFinishAngle) * s.TargetDist);
     cms.Angle = Math.PI - s.TargetFinishAngle;
     return cms;
 }
        public void newTrainEpoch()
        {
            lock (carModelGraphicControl1.trainingModels)
            {
                carModelGraphicControl1.trainingModels = new List <CarModel>();
                lock (carModelGraphicControl1.trainingModels)
                {
                    if (neuralController.trainInnerStates != null)
                    {
                        foreach (GridCarModelState s in neuralController.trainInnerStates)
                        {
                            carModelGraphicControl1.trainingModels.Add(new CarModel(GridCarModelState.ToCarModelState(s)));
                        }
                    }

                    if (neuralController.trainInnerStatesOrig != null)
                    {
                        foreach (GridCarModelState s in neuralController.trainInnerStatesOrig)
                        {
                            carModelGraphicControl1.trainingModels.Add(new CarModel(GridCarModelState.ToCarModelState(s), Color.Brown));
                        }
                    }
                }
            }
        }
示例#3
0
        public static CarModelState ToCarModelState(GridCarModelState s)
        {
            CarModelState cms = new CarModelState();

            cms.Position = new PointD(Math.Cos(s.TargetAngle - s.TargetFinishAngle) * s.TargetDist, Math.Sin(s.TargetAngle - s.TargetFinishAngle) * s.TargetDist);
            cms.Angle    = Math.PI - s.TargetFinishAngle;
            return(cms);
        }
 public static GridCarModelState FromCarModelState(CarModelState s)
 {
     GridCarModelState gcms = new GridCarModelState();
     gcms.TargetFinishAngle = Math.PI-s.Angle;
     gcms.TargetAngle = Math.Atan2(s.Position.Y, s.Position.X) + gcms.TargetFinishAngle;
     gcms.TargetDist = Math.Sqrt(s.Position.Y * s.Position.Y + s.Position.X * s.Position.X);            
     return gcms;
 }
示例#5
0
        public static GridCarModelState FromCarModelState(CarModelState s)
        {
            GridCarModelState gcms = new GridCarModelState();

            gcms.TargetFinishAngle = Math.PI - s.Angle;
            gcms.TargetAngle       = Math.Atan2(s.Position.Y, s.Position.X) + gcms.TargetFinishAngle;
            gcms.TargetDist        = Math.Sqrt(s.Position.Y * s.Position.Y + s.Position.X * s.Position.X);
            return(gcms);
        }
示例#6
0
        public void Simulate(GridCarModelState initialState, int simCount, out GridCarModelInput[] inputs, out GridCarModelState[] states)
        {
            inputs = new GridCarModelInput[simCount];
            states = new GridCarModelState[simCount];
            GridCarModelState state = initialState;

            for (int i = 0; i < simCount; ++i)
            {
                SimulateOneStep(state, out inputs[i], out states[i]);
                state = states[i];
            }
        }
示例#7
0
        //private double obstacleFieldError(GridCarModelState state)
        //{
        //    double err = 0;
        //    List<ObstacleState> obstacles = obstacleProvider.GetObstacleStates(1);
        //    foreach (ObstacleState obst in obstacles)
        //    {
        //        double d = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
        //        double x = Math.Cos(state.TargetAngle - state.TargetFinishAngle) * d;
        //        double y = Math.Sin(state.TargetAngle - state.TargetFinishAngle) * d;

        //        double x0 = ComMath.Normal(obst.pp.position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
        //        double y0 = ComMath.Normal(obst.pp.position.Y, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);

        //        double dist = Math.Sqrt((x - x0) * (x - x0) + (y - y0) * (y - y0));
        //        err += Math.Pow(1 / dist - 1 / obst.radius, 2);
        //    }

        //    return err;
        //}

        private static PolarGrid obstaclePolarGrid(IObstaclePositionProvider ops, GridCarModelState state)
        {
            List <ObstacleState> obstacles = ops.GetObstacleStates(0);
            PolarGrid            pg        = new PolarGrid();

            foreach (ObstacleState obst in obstacles)
            {
                GridObstacleState gos = GridObstacleState.FromObstacleState(obst, state);
                pg.AddObstacle(gos);
            }
            return(pg);
        }
        private static double[] obstacleFieldErrorGradient(IObstaclePositionProvider ops, GridCarModelState state, int time)
        {
            //C = sum((1/d(X) - 1/d(0))^2)
            //dC/dy_x =...
            //dC/dy_y =...
            double ksi = 0.1;
            double disterr = 0;
            double orxerr = 0;
            double oryerr = 0;

            List<ObstacleState> obstacles = ops.GetObstacleStates(0);
            foreach (ObstacleState obst in obstacles)//cel az origo, tehat az origohoz relativak az akadalyok, origo felfele nez
            {
                double d = ComMath.Normal(Math.Sqrt(obst.pp.position.X * obst.pp.position.X + obst.pp.position.Y * obst.pp.position.Y), GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
                double a = ComMath.Normal(state.TargetDist , GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);

                double ang = Math.PI - (Math.Atan2(obst.pp.position.Y, obst.pp.position.X) + Math.PI) + state.TargetAngle - state.TargetFinishAngle;
                if (ang > Math.PI) ang -= 2 * Math.PI;
                if (ang < -Math.PI) ang += 2 * Math.PI;

                double AA = -2 * d * Math.Cos(ang);
                double BB = d * d;
                double obstdist = Math.Sqrt(a * a + BB + AA * a);
                double obstang = state.TargetAngle + Math.Sign(ang) * Math.Acos((a * a + obstdist * obstdist - d * d) / (2 * a * obstdist));

                
                double r = ComMath.Normal(obst.radius + CarModel.SHAFT_LENGTH / 2, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
                double dist = obstdist - r;
                if (dist <= 0.0001) dist = 0.0001;
                double err = 1 / (2 * (dist * dist * dist));


                disterr += -(AA + 2 * a) * err;
                double angerr = (-2 * a * d * Math.Sin(ang)) * err;

                orxerr += -Math.Sin(state.TargetAngle) * angerr;
                oryerr += Math.Cos(state.TargetAngle) * angerr; 

            }
            if (obstacles.Count > 0)
            {
                disterr /= obstacles.Count;
                orxerr /= obstacles.Count;
                oryerr /= obstacles.Count;
            }

            return new double[] { -ksi * disterr, -ksi * orxerr, -ksi * oryerr };
        }
        public static GridObstacleState FromObstacleState(ObstacleState obst, GridCarModelState state)
        {            
            double d = ComMath.Normal(Math.Sqrt(obst.pp.position.X * obst.pp.position.X + obst.pp.position.Y * obst.pp.position.Y), GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, 1);
            double a = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, 1);
            double ang = Math.PI - (Math.Atan2(obst.pp.position.Y, obst.pp.position.X) + Math.PI) + state.TargetAngle - state.TargetFinishAngle;
            if (ang > Math.PI) ang -= 2 * Math.PI;
            if (ang < -Math.PI) ang += 2 * Math.PI;

            double AA = -2 * d * Math.Cos(ang);
            double BB = d * d;
            double obstdist = Math.Sqrt(a * a + BB + AA * a);
            double obstang = state.TargetAngle + Math.Sign(ang) * Math.Acos((a * a + obstdist * obstdist - d * d) / (2 * a * obstdist));

            GridObstacleState gos = new GridObstacleState(obstdist, obstang, obst.radius);
            return gos;
        }
        public void SimulateModel(GridCarModelState state, GridCarModelInput input, double timeStep, out GridCarModelState output)
        {
            this.state = state;
            this.input = input;
            GridCarModelState state2 = state;
            double dAngle = (input.LeftSpeed - input.RightSpeed) * timeStep / CarModel.SHAFT_LENGTH;
            double lamda = 1;
            if (dAngle != 0) lamda = 2 / dAngle * Math.Sin(dAngle / 2);
            double vectLength = (input.RightSpeed + input.LeftSpeed) / 2 * timeStep * lamda;

            state2.TargetDist = Math.Sqrt(state.TargetDist * state.TargetDist + vectLength * vectLength - 2 * state.TargetDist * vectLength * Math.Cos(state.TargetAngle - dAngle / 2));

            state2.TargetAngle = state.TargetAngle - dAngle + Math.Sign(state.TargetAngle - dAngle / 2) * Math.Acos((state.TargetDist * state.TargetDist + state2.TargetDist * state2.TargetDist - vectLength * vectLength) / (2 * state.TargetDist * state2.TargetDist));

            state2.TargetFinishAngle -= dAngle;

            output = state2;
        }
        public void SimulateModel(GridCarModelState state, GridCarModelInput input, double timeStep, out GridCarModelState output)
        {
            this.state = state;
            this.input = input;
            GridCarModelState state2 = state;
            double            dAngle = (input.LeftSpeed - input.RightSpeed) * timeStep / CarModel.SHAFT_LENGTH;
            double            lamda  = 1;

            if (dAngle != 0)
            {
                lamda = 2 / dAngle * Math.Sin(dAngle / 2);
            }
            double vectLength = (input.RightSpeed + input.LeftSpeed) / 2 * timeStep * lamda;

            state2.TargetDist = Math.Sqrt(state.TargetDist * state.TargetDist + vectLength * vectLength - 2 * state.TargetDist * vectLength * Math.Cos(state.TargetAngle - dAngle / 2));

            state2.TargetAngle = state.TargetAngle - dAngle + Math.Sign(state.TargetAngle - dAngle / 2) * Math.Acos((state.TargetDist * state.TargetDist + state2.TargetDist * state2.TargetDist - vectLength * vectLength) / (2 * state.TargetDist * state2.TargetDist));

            state2.TargetFinishAngle -= dAngle;

            output = state2;
        }
        public void CalcErrorSensibility(double[] errors, out double[] sensitibility)//errors: distance error, orientation x,y error, finish orientation x,y error
        {

            GridCarModelState output1, output2, state1, state2, origiState = this.state;
            GridCarModelInput input1, input2, origiInput = this.input;
            double DIFF_C = 0.001;
            sensitibility = new double[6];

            //******
            //DIST
            //******

            state1 = origiState;
            state1.TargetDist = ComMath.Normal(ComMath.Normal(state1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST,
                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST);
                                        
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetDist = ComMath.Normal(ComMath.Normal(state2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST,
                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[0] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];

            
            //******
            //ORIENTATION X
            //******

            state1 = origiState;
            state1.TargetOrientation = new PointD(ComMath.Normal(ComMath.Normal(state1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                            state1.TargetOrientation.Y);
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetOrientation = new PointD(ComMath.Normal(ComMath.Normal(state2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                         NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                  NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                  GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                           state2.TargetOrientation.Y);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[1] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                                (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                                (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                                (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                                (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];
            //******
            //ORIENTATION Y
            //******

            state1 = origiState;
            state1.TargetOrientation = new PointD(state1.TargetOrientation.X,
                                            ComMath.Normal(ComMath.Normal(state1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetOrientation = new PointD(state2.TargetOrientation.X,
                                            ComMath.Normal(ComMath.Normal(state2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[2] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                  ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                                 (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                  ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                                 (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                  ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                                 (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                  ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                                 (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                  ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];

            //******
            //FINISH ORIENTATION X
            //******

            state1 = origiState;
            state1.TargetFinishOrientation = new PointD(ComMath.Normal(ComMath.Normal(state1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                            state1.TargetFinishOrientation.Y);
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetFinishOrientation = new PointD(ComMath.Normal(ComMath.Normal(state2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                         NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                  NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                  GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                           state2.TargetFinishOrientation.Y);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[3] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                                (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                                (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                                (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                                (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];
            //******
            //FINISH ORIENTATION Y
            //******

            state1 = origiState;
            state1.TargetFinishOrientation = new PointD(state1.TargetFinishOrientation.X,
                                            ComMath.Normal(ComMath.Normal(state1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetFinishOrientation = new PointD(state2.TargetFinishOrientation.X,
                                            ComMath.Normal(ComMath.Normal(state2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                   NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                   GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[4] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];            
            
            //******
            //ANGLE
            //******

            input1 = origiInput;
            input1.Angle = ComMath.Normal(ComMath.Normal(input1.Angle, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE,
                                              NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                       GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
            this.SimulateModel(origiState, input1, out output1);
            input2 = origiInput;
            input2.Angle = ComMath.Normal(ComMath.Normal(input2.Angle, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE,
                                              NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                       GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
            this.SimulateModel(origiState, input2, out output2);
            sensitibility[5] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                                (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                                (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                                (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                                (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                 ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];
                       

            this.state = origiState;
            this.input = origiInput;
        }
 //matematikai modell
 public void SimulateModel(GridCarModelState state, GridCarModelInput input, out GridCarModelState output)
 {
     SimulateModel(state, input, CarModel.SIMULATION_TIME_STEP, out output);
 }
示例#14
0
        private static double TrainOneEpoch(MLPDll controller, IGridModelSimulator model, ICarPositionProvider cps, IFinishPositionProvider fps, IObstaclePositionProvider ops, double mu, int maxSimCount, out double SumSimCount, out List <GridCarModelState> innerStates)
        {
            double sumSimCount = 0;
            double error       = 0;

            innerStates = new List <GridCarModelState>();
            List <double> deltaws = new List <double>();

            MLPDll[] controllers         = new MLPDll[maxSimCount];
            IGridModelSimulator[] models = new IGridModelSimulator[maxSimCount];

            GridCarModelState state = GridCarModelState.FromCarModelState(cps.GetCarState());
            GridCarModelInput input = new GridCarModelInput();


            //kimenet kiszamitasa
            int               simCount             = 0;
            List <double[]>   singleErrors         = new List <double[]>();
            List <double[]>   regularizationErrors = new List <double[]>();
            GridCarModelState laststate;
            bool              earlyStop;

            do
            {
                if (simCount == 0)
                {
                    controllers[simCount] = new MLPDll(controller);               //lemasoljuk
                }
                else
                {
                    controllers[simCount] = new MLPDll(controllers[simCount - 1]);
                }
                models[simCount] = model.Clone();//a modellt is

                laststate = state;
                GridNeuralController.SimulateOneStep(controllers[simCount], models[simCount], state, out input, out state);//vegigszimulaljuk a simCount darab controlleren es modellen
                innerStates.Add(state);

                //kozbulso hibak kiszamitasa, itt csak az akadalyoktol valo tavolsag "hibajat" vesszuk figyelembe, irany nem szamit -> hibaja 0
                regularizationErrors.Add(obstacleFieldErrorGradient(ops, state, simCount));

                //minden pont celtol vett tavolsaga
                double disterror        = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, 1);
                double orientationerror = disterror;
                if (orientationerror < 0.2)
                {
                    orientationerror = 0;
                }
                double finishorientationerror = disterror;
                if (finishorientationerror > 0.05)
                {
                    finishorientationerror = 0;
                }
                else
                {
                    finishorientationerror = 1;
                }
                double finishX = Math.Cos(Math.PI - fps.GetFinishState(simCount).Angle);
                double finishY = Math.Sin(Math.PI - fps.GetFinishState(simCount).Angle);

                singleErrors.Add(new double[] { -disterror * MAX_NEURON_VALUE,
                                                orientationerror * ComMath.Normal(1 - state.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                orientationerror * ComMath.Normal(0 - state.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                finishorientationerror * ComMath.Normal(finishX - state.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE),
                                                finishorientationerror * ComMath.Normal(finishY - state.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE) }
                                 );
                ++simCount;

                earlyStop = false;
                if (simCount > 3)
                {
                    double[] err1 = singleErrors[simCount - 1];
                    double[] err2 = singleErrors[simCount - 2];
                    double[] err3 = singleErrors[simCount - 3];
                    double   error1, error2, error3;
                    error1 = error2 = error3 = 0;
                    for (int i = 0; i < 1; i++)//err1.Length
                    {
                        error1 += err1[i] * err1[i];
                        error2 += err2[i] * err2[i];
                        error3 += err3[i] * err3[i];
                    }
                    earlyStop = ((error1 > error2) && (error3 > error2));

                    if (earlyStop)
                    {
                        //utolso elemet toroljuk
                        singleErrors.RemoveAt(singleErrors.Count - 1);
                        regularizationErrors.RemoveAt(regularizationErrors.Count - 1);
                        innerStates.RemoveAt(innerStates.Count - 1);
                        --simCount;
                    }
                }
            }while ((simCount < maxSimCount) && !earlyStop);



            double[] errors = singleErrors[singleErrors.Count - 1];

            sumSimCount += simCount;

            //hibavisszaterjesztes
            for (int i = simCount - 1; i >= 0; --i)
            {
                double[] sensitibility;
                models[i].CalcErrorSensibility(errors, out sensitibility);

                double[] inputSensitibility;


                inputSensitibility    = new double[1];
                inputSensitibility[0] = sensitibility[5];


                double[] sensitibility2;

                controllers[i].SetOutputError(inputSensitibility);
                controllers[i].Backpropagate();
                controllers[i].CalculateDeltaWeights();
                sensitibility2 = controllers[i].SensitibilityD();



                errors[0] = (sensitibility[0] + sensitibility2[0] + 0.1 * singleErrors[i][0]);
                errors[1] = (sensitibility[1] + sensitibility2[1] + 0 * singleErrors[i][1]);
                errors[2] = (sensitibility[2] + sensitibility2[2] + 0 * singleErrors[i][2]);
                errors[3] = (sensitibility[3] + sensitibility2[3] + singleErrors[i][3]);
                errors[4] = (sensitibility[4] + sensitibility2[4] + singleErrors[i][4]);

                //regularizaciobol szarmazo hiba hozzaadasa
                errors[0] += regularizationErrors[i][0];
                errors[1] += regularizationErrors[i][1];
                errors[2] += regularizationErrors[i][2];
            }

            controller.ClearDeltaWeights();
            //sulymodositasok osszegzese
            for (int i2 = 0; i2 < simCount; ++i2)
            {
                controller.AddDeltaWeights(controllers[i2]);
            }
            float maxdw = controller.MaxDeltaWeight();

            //if (maxdw < 50) maxdw = 50;

            controller.ChangeWeights(mu / maxdw);

            ////sulymodositasok osszegzese
            //for (int i2 = 0; i2 < simCount; ++i2) //simCount
            //{

            //    int count = 0;
            //    for (int i = 1; i < controllers[i2]; ++i)
            //    {
            //        foreach (INeuron n in controllers[i2].mlp[i])
            //        {
            //            foreach (NeuronInput ni in ((Neuron)n).inputs)
            //            {
            //                if (deltaws.Count <= count) deltaws.Add(ni.deltaw);
            //                else deltaws[count] += ni.deltaw;
            //                ++count;
            //            }
            //        }
            //    }
            //}

            ////legnagyobb sulymodositas ertekenek meghatarozasa, majd ezzel normalas
            //double maxdw = 1;

            //foreach (double dw in deltaws)
            //{
            //    if (Math.Abs(dw) > maxdw) maxdw = Math.Abs(dw);
            //}

            //if (maxdw < 50) maxdw = 50;

            ////sulymodositasok ervenyre juttatasa a controllerben
            //int count2 = 0;

            //for (int i = 1; i < controller.mlp.Count; ++i)
            //{
            //    foreach (INeuron n in controller.mlp[i])
            //    {
            //        foreach (NeuronInput ni in ((Neuron)n).inputs)
            //        {
            //            ni.w += mu * deltaws[count2] / maxdw;

            //            ++count2;
            //        }
            //    }
            //}


            SumSimCount = sumSimCount;
            return(error);
        }
示例#15
0
 public void SimulateOneStep(GridCarModelState state, out GridCarModelInput outInput, out GridCarModelState outState)
 {
     GridNeuralController.SimulateOneStep(this.controllerOriginal, this.model, state, out outInput, out outState);
 }
示例#16
0
        public static void SimulateOneStep(MLPDll controller, IGridModelSimulator model, GridCarModelState state, out GridCarModelInput outInput, out GridCarModelState outState)
        {
            double[] inputs = new double[5];
            inputs[0] = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[4] = ComMath.Normal(state.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);


            outInput       = new GridCarModelInput();
            outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);

            model.SimulateModel(state, outInput, out outState);
        }
        public static void SimulateOneStep(MLPDll controller, IGridModelSimulator model, GridCarModelState state, out GridCarModelInput outInput, out GridCarModelState outState)
        {
            double[] inputs = new double[5];
            inputs[0] = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
            inputs[1] = ComMath.Normal(state.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[2] = ComMath.Normal(state.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[3] = ComMath.Normal(state.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            inputs[4] = ComMath.Normal(state.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
            double[] controllerOutputs = controller.Output(inputs);

            
            outInput = new GridCarModelInput();
            outInput.Angle = ComMath.Normal(controllerOutputs[0], MIN_NEURON_VALUE, MAX_NEURON_VALUE, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
                       
            model.SimulateModel(state, outInput, out outState);
        }
 public void SimulateOneStep(GridCarModelState state, out GridCarModelInput outInput, out GridCarModelState outState)
 {
     GridNeuralController.SimulateOneStep(this.controllerOriginal, this.model, state, out outInput, out outState);
 }
 public void Simulate(GridCarModelState initialState, int simCount, out GridCarModelInput[] inputs, out GridCarModelState[] states)
 {
     inputs = new GridCarModelInput[simCount];
     states = new GridCarModelState[simCount];
     GridCarModelState state = initialState;
     for (int i = 0; i < simCount; ++i)
     {
         SimulateOneStep(state, out inputs[i], out states[i]);
         state = states[i];
     }
 }
        //private double obstacleFieldError(GridCarModelState state)
        //{
        //    double err = 0;
        //    List<ObstacleState> obstacles = obstacleProvider.GetObstacleStates(1);
        //    foreach (ObstacleState obst in obstacles)
        //    {
        //        double d = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
        //        double x = Math.Cos(state.TargetAngle - state.TargetFinishAngle) * d;
        //        double y = Math.Sin(state.TargetAngle - state.TargetFinishAngle) * d;

        //        double x0 = ComMath.Normal(obst.pp.position.X, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);
        //        double y0 = ComMath.Normal(obst.pp.position.Y, CarModelState.MIN_POS_X, CarModelState.MAX_POS_X, MIN_NEURON_VALUE, MAX_NEURON_VALUE);

        //        double dist = Math.Sqrt((x - x0) * (x - x0) + (y - y0) * (y - y0));
        //        err += Math.Pow(1 / dist - 1 / obst.radius, 2);
        //    }

        //    return err;
        //}

        private static PolarGrid obstaclePolarGrid(IObstaclePositionProvider ops, GridCarModelState state)
        {
            List<ObstacleState> obstacles = ops.GetObstacleStates(0);
            PolarGrid pg = new PolarGrid();
            foreach (ObstacleState obst in obstacles)
            {
                GridObstacleState gos = GridObstacleState.FromObstacleState(obst, state);
                pg.AddObstacle(gos);                
            }
            return pg;
        }
        private void timer1_Tick(object sender, EventArgs e)
        {
            if (carRunning)
            {
                if (timerDiv == 0)
                {
                    ICarPositionProvider    carPos;
                    IFinishPositionProvider finishPos;
                    if (simulation)
                    {
                        itemManager.TakeSample();
                        carPos    = itemManager;
                        finishPos = itemManager;
                    }
                    else
                    {
                        cameraCarPosition.TakeSample();
                        carPos    = cameraCarPosition;
                        finishPos = cameraCarPosition;
                    }

                    //leallitas ha beert a celba
                    double errx  = carPos.GetCarState().Position.X - finishPos.GetFinishState(0).Position.X;
                    double erry  = carPos.GetCarState().Position.Y - finishPos.GetFinishState(0).Position.Y;
                    double errox = carPos.GetCarState().Orientation.X - finishPos.GetFinishState(0).Orientation.X;
                    double erroy = carPos.GetCarState().Orientation.Y - finishPos.GetFinishState(0).Orientation.Y;

                    if ((errx * errx + erry * erry < CarModel.SHAFT_LENGTH * CarModel.SHAFT_LENGTH) && (errox * errox + erroy * erroy < 0.2))
                    {
                        buttonStopSim_Click(this, null);
                    }
                    else
                    {
                        carModelGraphicControl1.SetReceiveCommand();
                        GridCarModelInput oi;
                        GridCarModelState os;
                        neuralController.SimulateOneStep(GridCarModelState.FromCarModelState(carPos.GetCarState()), out oi, out os);
                        outState = GridCarModelState.ToCarModelState(os);
                        outInput = new CarModelInput(oi.Angle);

                        //outInput = new CarModelInput(20, 100);
                        if (checkBoxSerial.Checked)
                        {
                            byte leftspd  = (byte)Convert.ToSByte(ComMath.Normal(outInput.LeftSpeed, -180, 180, -128, 127));
                            byte rightspd = (byte)Convert.ToSByte(ComMath.Normal(outInput.RightSpeed, -180, 180, -128, 127)); //-125, 124
                            if (checkBoxCarEnable.Checked)
                            {
                                serialComm.Motor_I2C_Forward(1, leftspd, rightspd);
                            }
                            //Thread.Sleep(200);
                        }
                    }
                }

                timerDiv = (timerDiv + 1) % (long)(CarModel.SIMULATION_TIME_STEP * 1000.0 / timer1.Interval);
                if (simulation)
                {
                    //itemManager.Simulate(new MathModelSimulator(), outInput, timer1.Interval / 1000.0);
                    itemManager.SimualteGrid(new GridMathModelSimulator(), new GridCarModelInput(outInput.LeftSpeed, outInput.RightSpeed), timer1.Interval / 1000.0);
                }
                else
                {
                    cameraCarPosition.Simulate(new MathModelSimulator(), outInput, timer1.Interval / 1000.0);
                }
            }

            carModelGraphicControl1.Invalidate();
        }
示例#22
0
        private static double[] obstacleFieldErrorGradient(IObstaclePositionProvider ops, GridCarModelState state, int time)
        {
            //C = sum((1/d(X) - 1/d(0))^2)
            //dC/dy_x =...
            //dC/dy_y =...
            double ksi     = 0.1;
            double disterr = 0;
            double orxerr  = 0;
            double oryerr  = 0;

            List <ObstacleState> obstacles = ops.GetObstacleStates(0);

            foreach (ObstacleState obst in obstacles)//cel az origo, tehat az origohoz relativak az akadalyok, origo felfele nez
            {
                double d = ComMath.Normal(Math.Sqrt(obst.pp.position.X * obst.pp.position.X + obst.pp.position.Y * obst.pp.position.Y), GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
                double a = ComMath.Normal(state.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);

                double ang = Math.PI - (Math.Atan2(obst.pp.position.Y, obst.pp.position.X) + Math.PI) + state.TargetAngle - state.TargetFinishAngle;
                if (ang > Math.PI)
                {
                    ang -= 2 * Math.PI;
                }
                if (ang < -Math.PI)
                {
                    ang += 2 * Math.PI;
                }

                double AA       = -2 * d * Math.Cos(ang);
                double BB       = d * d;
                double obstdist = Math.Sqrt(a * a + BB + AA * a);
                double obstang  = state.TargetAngle + Math.Sign(ang) * Math.Acos((a * a + obstdist * obstdist - d * d) / (2 * a * obstdist));


                double r    = ComMath.Normal(obst.radius + CarModel.SHAFT_LENGTH / 2, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, 0, MAX_NEURON_VALUE);
                double dist = obstdist - r;
                if (dist <= 0.0001)
                {
                    dist = 0.0001;
                }
                double err = 1 / (2 * (dist * dist * dist));


                disterr += -(AA + 2 * a) * err;
                double angerr = (-2 * a * d * Math.Sin(ang)) * err;

                orxerr += -Math.Sin(state.TargetAngle) * angerr;
                oryerr += Math.Cos(state.TargetAngle) * angerr;
            }
            if (obstacles.Count > 0)
            {
                disterr /= obstacles.Count;
                orxerr  /= obstacles.Count;
                oryerr  /= obstacles.Count;
            }

            return(new double[] { -ksi * disterr, -ksi * orxerr, -ksi * oryerr });
        }
        public void CalcErrorSensibility(double[] errors, out double[] sensitibility)//errors: distance error, orientation x,y error, finish orientation x,y error
        {
            GridCarModelState output1, output2, state1, state2, origiState = this.state;
            GridCarModelInput input1, input2, origiInput = this.input;
            double            DIFF_C = 0.001;

            sensitibility = new double[6];

            //******
            //DIST
            //******

            state1            = origiState;
            state1.TargetDist = ComMath.Normal(ComMath.Normal(state1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST,
                                                              NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                               NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                               GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST);

            this.SimulateModel(state1, origiInput, out output1);
            state2            = origiState;
            state2.TargetDist = ComMath.Normal(ComMath.Normal(state2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST,
                                                              NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                               NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                               GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[0] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];


            //******
            //ORIENTATION X
            //******

            state1 = origiState;
            state1.TargetOrientation = new PointD(ComMath.Normal(ComMath.Normal(state1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                                 NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                 GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                                  state1.TargetOrientation.Y);
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetOrientation = new PointD(ComMath.Normal(ComMath.Normal(state2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                                 NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                 GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                                  state2.TargetOrientation.Y);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[1] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];
            //******
            //ORIENTATION Y
            //******

            state1 = origiState;
            state1.TargetOrientation = new PointD(state1.TargetOrientation.X,
                                                  ComMath.Normal(ComMath.Normal(state1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                                 NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                 GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetOrientation = new PointD(state2.TargetOrientation.X,
                                                  ComMath.Normal(ComMath.Normal(state2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                                 NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                 GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[2] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];

            //******
            //FINISH ORIENTATION X
            //******

            state1 = origiState;
            state1.TargetFinishOrientation = new PointD(ComMath.Normal(ComMath.Normal(state1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                      NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                       GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                                        state1.TargetFinishOrientation.Y);
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetFinishOrientation = new PointD(ComMath.Normal(ComMath.Normal(state2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                      NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                       GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY),
                                                        state2.TargetFinishOrientation.Y);
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[3] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];
            //******
            //FINISH ORIENTATION Y
            //******

            state1 = origiState;
            state1.TargetFinishOrientation = new PointD(state1.TargetFinishOrientation.X,
                                                        ComMath.Normal(ComMath.Normal(state1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                      NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                       GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state1, origiInput, out output1);
            state2 = origiState;
            state2.TargetFinishOrientation = new PointD(state2.TargetFinishOrientation.X,
                                                        ComMath.Normal(ComMath.Normal(state2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY,
                                                                                      NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                                                       NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                                                       GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY));
            this.SimulateModel(state2, origiInput, out output2);
            sensitibility[4] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];

            //******
            //ANGLE
            //******

            input1       = origiInput;
            input1.Angle = ComMath.Normal(ComMath.Normal(input1.Angle, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE,
                                                         NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) - DIFF_C / 2,
                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                          GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
            this.SimulateModel(origiState, input1, out output1);
            input2       = origiInput;
            input2.Angle = ComMath.Normal(ComMath.Normal(input2.Angle, GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE,
                                                         NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) + DIFF_C / 2,
                                          NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE,
                                          GridCarModelInput.MIN_ANGLE, GridCarModelInput.MAX_ANGLE);
            this.SimulateModel(origiState, input2, out output2);
            sensitibility[5] = (ComMath.Normal(output2.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetDist, GridCarModelState.MIN_DIST, GridCarModelState.MAX_DIST, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[0] +
                               (ComMath.Normal(output2.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[1] +
                               (ComMath.Normal(output2.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[2] +
                               (ComMath.Normal(output2.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.X, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[3] +
                               (ComMath.Normal(output2.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE) -
                                ComMath.Normal(output1.TargetFinishOrientation.Y, GridCarModelState.MIN_OR_XY, GridCarModelState.MAX_OR_XY, NeuralController.MIN_NEURON_VALUE, NeuralController.MAX_NEURON_VALUE)) / DIFF_C * errors[4];


            this.state = origiState;
            this.input = origiInput;
        }
 //matematikai modell
 public void SimulateModel(GridCarModelState state, GridCarModelInput input, out GridCarModelState output)
 {
     SimulateModel(state, input, CarModel.SIMULATION_TIME_STEP, out output);
 }