//*********************************************************************** // Performs the calculation of the kth term in the Lucas Sequence. // For details of the algorithm, see reference [9]. // // k must be odd. i.e LSB == 1 //*********************************************************************** private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q, BigInteger k, BigInteger n, BigInteger constant, int s) { var result = new BigInteger[3]; if ((k.data[0] & 0x00000001) == 0) throw (new ArgumentException("Argument k must be odd.")); int numbits = k.bitCount(); uint mask = (uint) 0x1 << ((numbits & 0x1F) - 1); // v = v0, v1 = v1, u1 = u1, Q_k = Q^0 BigInteger v = 2%n, Q_k = 1%n, v1 = P%n, u1 = Q_k; bool flag = true; for (int i = k.dataLength - 1; i >= 0; i--) // iterate on the binary expansion of k { //Console.WriteLine("round"); while (mask != 0) { if (i == 0 && mask == 0x00000001) // last bit break; if ((k.data[i] & mask) != 0) // bit is set { // index doubling with addition u1 = (u1*v1)%n; v = ((v*v1) - (P*Q_k))%n; v1 = n.BarrettReduction(v1*v1, n, constant); v1 = (v1 - ((Q_k*Q) << 1))%n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k*Q_k, n, constant); Q_k = (Q_k*Q)%n; } else { // index doubling u1 = ((u1*v) - Q_k)%n; v1 = ((v*v1) - (P*Q_k))%n; v = n.BarrettReduction(v*v, n, constant); v = (v - (Q_k << 1))%n; if (flag) { Q_k = Q%n; flag = false; } else Q_k = n.BarrettReduction(Q_k*Q_k, n, constant); } mask >>= 1; } mask = 0x80000000; } // at this point u1 = u(n+1) and v = v(n) // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1) u1 = ((u1*v) - Q_k)%n; v = ((v*v1) - (P*Q_k))%n; if (flag) flag = false; else Q_k = n.BarrettReduction(Q_k*Q_k, n, constant); Q_k = (Q_k*Q)%n; for (int i = 0; i < s; i++) { // index doubling u1 = (u1*v)%n; v = ((v*v) - (Q_k << 1))%n; if (flag) { Q_k = Q%n; flag = false; } else Q_k = n.BarrettReduction(Q_k*Q_k, n, constant); } result[0] = u1; result[1] = v; result[2] = Q_k; return result; }
private bool LucasStrongTestHelper(BigInteger thisVal) { // Do the test (selects D based on Selfridge) // Let D be the first element of the sequence // 5, -7, 9, -11, 13, ... for which J(D,n) = -1 // Let P = 1, Q = (1-D) / 4 long D = 5, sign = -1, dCount = 0; bool done = false; while (!done) { int Jresult = Jacobi(D, thisVal); if (Jresult == -1) done = true; // J(D, this) = 1 else { if (Jresult == 0 && Math.Abs(D) < thisVal) // divisor found return false; if (dCount == 20) { // check for square BigInteger root = thisVal.sqrt(); if (root*root == thisVal) return false; } //Console.WriteLine(D); D = (Math.Abs(D) + 2)*sign; sign = -sign; } dCount++; } long Q = (1 - D) >> 2; /* Console.WriteLine("D = " + D); Console.WriteLine("Q = " + Q); Console.WriteLine("(n,D) = " + thisVal.gcd(D)); Console.WriteLine("(n,Q) = " + thisVal.gcd(Q)); Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal)); */ BigInteger p_add1 = thisVal + 1; int s = 0; for (int index = 0; index < p_add1.dataLength; index++) { uint mask = 0x01; for (int i = 0; i < 32; i++) { if ((p_add1.data[index] & mask) != 0) { index = p_add1.dataLength; // to break the outer loop break; } mask <<= 1; s++; } } BigInteger t = p_add1 >> s; // calculate constant = b^(2k) / m // for Barrett Reduction var constant = new BigInteger(); int nLen = thisVal.dataLength << 1; constant.data[nLen] = 0x00000001; constant.dataLength = nLen + 1; constant = constant/thisVal; BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0); bool isPrime = false; if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) { // u(t) = 0 or V(t) = 0 isPrime = true; } for (int i = 1; i < s; i++) { if (!isPrime) { // doubling of index lucas[1] = thisVal.BarrettReduction(lucas[1]*lucas[1], thisVal, constant); lucas[1] = (lucas[1] - (lucas[2] << 1))%thisVal; //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal; if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0)) isPrime = true; } lucas[2] = thisVal.BarrettReduction(lucas[2]*lucas[2], thisVal, constant); //Q^k } if (isPrime) // additional checks for composite numbers { // If n is prime and gcd(n, Q) == 1, then // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n BigInteger g = thisVal.gcd(Q); if (g.dataLength == 1 && g.data[0] == 1) // gcd(this, Q) == 1 { if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0) lucas[2] += thisVal; BigInteger temp = (Q*Jacobi(Q, thisVal))%thisVal; if ((temp.data[maxLength - 1] & 0x80000000) != 0) temp += thisVal; if (lucas[2] != temp) isPrime = false; } } return isPrime; }