private void IntraLevelSearch(int cellIndex)
            {
                int4 cellCoords = grid.usedCells[cellIndex].Coords;

                // neighboring cells in the current level:
                for (int i = 0; i < 13; ++i)
                {
                    int4 neighborCellCoords = new int4(cellCoords.xyz + GridHash.cellOffsets3D[i], cellCoords.w);

                    int neighborCellIndex;
                    if (grid.TryGetCellIndex(neighborCellCoords, out neighborCellIndex))
                    {
                        InterCellSearch(cellIndex, neighborCellIndex);
                    }
                }

                // neighboring cells in levels above the current one:
                int levelIndex = gridLevels.IndexOf <int, int>(cellCoords.w);

                if (levelIndex >= 0)
                {
                    levelIndex++;
                    for (; levelIndex < gridLevels.Length; ++levelIndex)
                    {
                        int level = gridLevels[levelIndex];

                        // calculate index of parent cell in parent level:
                        int4 parentCellCoords = NativeMultilevelGrid <int> .GetParentCellCoords(cellCoords, level);

                        // search in all neighbouring cells:
                        for (int x = -1; x <= 1; ++x)
                        {
                            for (int y = -1; y <= 1; ++y)
                            {
                                for (int z = -1; z <= 1; ++z)
                                {
                                    int4 neighborCellCoords = parentCellCoords + new int4(x, y, z, 0);

                                    int neighborCellIndex;
                                    if (grid.TryGetCellIndex(neighborCellCoords, out neighborCellIndex))
                                    {
                                        InterCellSearch(cellIndex, neighborCellIndex);
                                    }
                                }
                            }
                        }
                    }
                }
            }
            public void Execute()
            {
                while (movingParticles.Count > 0)
                {
                    MovingEntity movingParticle = movingParticles.Dequeue();

                    // remove from old cell:
                    int cellIndex;
                    if (grid.TryGetCellIndex(movingParticle.oldCellCoord, out cellIndex))
                    {
                        var oldCell = grid.usedCells[cellIndex];
                        oldCell.Remove(movingParticle.entity);
                        grid.usedCells[cellIndex] = oldCell;
                    }

                    // add to new cell:
                    cellIndex = grid.GetOrCreateCell(movingParticle.newCellCoord);

                    var newCell = grid.usedCells[cellIndex];
                    newCell.Add(movingParticle.entity);
                    grid.usedCells[cellIndex] = newCell;
                }

                grid.RemoveEmpty();
            }
            private void GetCandidatesForBoundsAtLevel(NativeList <int> candidates, BurstAabb cellBounds, int level, bool is2D = false, int maxSize = 10)
            {
                float cellSize = NativeMultilevelGrid <int> .CellSizeOfLevel(level);

                int3 minCell = GridHash.Quantize(cellBounds.min.xyz, cellSize);
                int3 maxCell = GridHash.Quantize(cellBounds.max.xyz, cellSize);

                maxCell = minCell + math.min(maxCell - minCell, new int3(maxSize));

                int3 size = maxCell - minCell + new int3(1);
                int  cellIndex;

                for (int x = minCell[0]; x <= maxCell[0]; ++x)
                {
                    for (int y = minCell[1]; y <= maxCell[1]; ++y)
                    {
                        // for 2D mode, project each cell at z == 0 and check them too. This way we ensure 2D colliders
                        // (which are inserted in cells with z == 0) are accounted for in the broadphase.
                        if (is2D)
                        {
                            if (colliderGrid.TryGetCellIndex(new int4(x, y, 0, level), out cellIndex))
                            {
                                var colliderCell = colliderGrid.usedCells[cellIndex];
                                candidates.AddRange(colliderCell.ContentsPointer, colliderCell.Length);
                            }
                        }

                        for (int z = minCell[2]; z <= maxCell[2]; ++z)
                        {
                            if (colliderGrid.TryGetCellIndex(new int4(x, y, z, level), out cellIndex))
                            {
                                var colliderCell = colliderGrid.usedCells[cellIndex];
                                candidates.AddRange(colliderCell.ContentsPointer, colliderCell.Length);
                            }
                        }
                    }
                }
            }
            public void Execute()
            {
                int currentA = 0;
                int currentB = 0;

                int lastA = previousActiveParticles.Length;
                int lastB = activeParticles.Length;

                NativeList <int> inactive = new NativeList <int>(math.max(lastA, lastB), Allocator.Temp);

                // perform a set difference to find particles rendered inactive since last update:
                while (currentA != lastA && currentB != lastB)
                {
                    if (previousActiveParticles[currentA] < activeParticles[currentB])
                    {
                        inactive.Add(previousActiveParticles[currentA++]);
                    }
                    else if (activeParticles[currentB] < previousActiveParticles[currentA])
                    {
                        ++currentB;
                    }
                    else
                    {
                        ++currentA; ++currentB;
                    }
                }

                // copy remaining elements:
                for (int i = currentA; i < lastA; ++i)
                {
                    inactive.Add(previousActiveParticles[i]);
                }

                // remove these particles from their current cell:
                for (int i = 0; i < inactive.Length; ++i)
                {
                    int cellIndex;
                    if (grid.TryGetCellIndex(cellCoords[inactive[i]], out cellIndex))
                    {
                        var oldCell = grid.usedCells[cellIndex];
                        oldCell.Remove(inactive[i]);
                        grid.usedCells[cellIndex] = oldCell;

                        // set their current cell coord to an invalid value:
                        cellCoords[inactive[i]] = new int4(int.MaxValue);
                    }
                }
            }
            public void Execute(int p)
            {
                neighbourCount[p] = 0;
                float4 diffuseProperty = float4.zero;
                float  kernelSum       = 0;

                int offsetCount = mode2D ? 4 : 8;

                float4 solverDiffusePosition = inertialFrame.frame.InverseTransformPoint(diffusePositions[p]);

                for (int k = 0; k < gridLevels.Length; ++k)
                {
                    int   l      = gridLevels[k];
                    float radius = NativeMultilevelGrid <int> .CellSizeOfLevel(l);

                    float4 cellCoords = math.floor(solverDiffusePosition / radius);

                    cellCoords[3] = 0;
                    if (mode2D)
                    {
                        cellCoords[2] = 0;
                    }

                    float4 posInCell = solverDiffusePosition - (cellCoords * radius + new float4(radius * 0.5f));
                    int4   quadrant  = (int4)math.sign(posInCell);

                    quadrant[3] = l;

                    for (int i = 0; i < offsetCount; ++i)
                    {
                        int cellIndex;
                        if (grid.TryGetCellIndex((int4)cellCoords + cellOffsets[i] * quadrant, out cellIndex))
                        {
                            var cell = grid.usedCells[cellIndex];
                            for (int n = 0; n < cell.Length; ++n)
                            {
                                float4 r = solverDiffusePosition - positions[cell[n]];
                                r[3] = 0;
                                if (mode2D)
                                {
                                    r[2] = 0;
                                }

                                float d = math.length(r);
                                if (d <= radius)
                                {
                                    float w = densityKernel.W(d, radius);
                                    kernelSum       += w;
                                    diffuseProperty += properties[cell[n]] * w;
                                    neighbourCount[p]++;
                                }
                            }
                        }
                    }
                }

                if (kernelSum > BurstMath.epsilon)
                {
                    diffuseProperties[p] = diffuseProperty / kernelSum;
                }
            }
示例#6
0
            public void Execute(int i)
            {
                int       simplexStart    = simplexCounts.GetSimplexStartAndSize(i, out int simplexSize);
                BurstAabb simplexBoundsSS = simplexBounds[i];

                // get all colliders overlapped by the cell bounds, in all grid levels:
                BurstAabb        simplexBoundsWS = simplexBoundsSS.Transformed(solverToWorld);
                NativeList <int> candidates      = new NativeList <int>(Allocator.Temp);

                // max size of the particle bounds in cells:
                int3 maxSize = new int3(10);
                bool is2D    = parameters.mode == Oni.SolverParameters.Mode.Mode2D;

                for (int l = 0; l < gridLevels.Length; ++l)
                {
                    float cellSize = NativeMultilevelGrid <int> .CellSizeOfLevel(gridLevels[l]);

                    int3 minCell = GridHash.Quantize(simplexBoundsWS.min.xyz, cellSize);
                    int3 maxCell = GridHash.Quantize(simplexBoundsWS.max.xyz, cellSize);
                    maxCell = minCell + math.min(maxCell - minCell, maxSize);

                    for (int x = minCell[0]; x <= maxCell[0]; ++x)
                    {
                        for (int y = minCell[1]; y <= maxCell[1]; ++y)
                        {
                            // for 2D mode, project each cell at z == 0 and check them too. This way we ensure 2D colliders
                            // (which are inserted in cells with z == 0) are accounted for in the broadphase.
                            if (is2D)
                            {
                                if (colliderGrid.TryGetCellIndex(new int4(x, y, 0, gridLevels[l]), out int cellIndex))
                                {
                                    var colliderCell = colliderGrid.usedCells[cellIndex];
                                    candidates.AddRange(colliderCell.ContentsPointer, colliderCell.Length);
                                }
                            }

                            for (int z = minCell[2]; z <= maxCell[2]; ++z)
                            {
                                if (colliderGrid.TryGetCellIndex(new int4(x, y, z, gridLevels[l]), out int cellIndex))
                                {
                                    var colliderCell = colliderGrid.usedCells[cellIndex];
                                    candidates.AddRange(colliderCell.ContentsPointer, colliderCell.Length);
                                }
                            }
                        }
                    }
                }

                if (candidates.Length > 0)
                {
                    // make sure each candidate collider only shows up once in the array:
                    NativeArray <int> uniqueCandidates = candidates.AsArray();
                    uniqueCandidates.Sort();
                    int uniqueCount = uniqueCandidates.Unique();

                    // iterate over candidate colliders, generating contacts for each one
                    for (int k = 0; k < uniqueCount; ++k)
                    {
                        int c = uniqueCandidates[k];
                        BurstColliderShape shape            = shapes[c];
                        BurstAabb          colliderBoundsWS = bounds[c];

                        // Expand bounds by rigidbody's linear velocity:
                        if (shape.rigidbodyIndex >= 0)
                        {
                            colliderBoundsWS.Sweep(rigidbodies[shape.rigidbodyIndex].velocity * deltaTime);
                        }

                        // Expand bounds by collision material's stick distance:
                        if (shape.materialIndex >= 0)
                        {
                            colliderBoundsWS.Expand(collisionMaterials[shape.materialIndex].stickDistance);
                        }

                        // check if any simplex particle and the collider have the same phase:
                        bool samePhase = false;
                        for (int j = 0; j < simplexSize; ++j)
                        {
                            samePhase |= shape.phase == (phases[simplices[simplexStart + j]] & (int)Oni.ParticleFlags.GroupMask);
                        }

                        if (!samePhase && simplexBoundsWS.IntersectsAabb(in colliderBoundsWS, is2D))
                        {
                            // generate contacts for the collider:
                            BurstAffineTransform colliderToSolver = worldToSolver * transforms[c];
                            GenerateContacts(in shape, in colliderToSolver, c, i, simplexStart, simplexSize, simplexBoundsSS);
                        }
                    }
                }
            }