public static void TestTanhLearningOnSinus() { NNetwork network = NNetwork.HyperbolicNetwork(new int[] { 1, 2, 1 }); network.RandomizeWeights(1, 2); NetworkTrainer trainer = new NetworkTrainer(network); double[][] inputs = SinusTrainSet()[0]; double[][] outputs = SinusTrainSet()[1]; double error = 1; double delta = 1; int j = 0; for (; error > 0.01 && !(delta <= 0.000001) || j == 1; j++) { trainer.TrainClassification(inputs, outputs); double new_cost = trainer.GetError(); delta = error - new_cost; error = new_cost; } double[][] input_test = SinusTrainSet(20)[0]; double[][] output_test = SinusTrainSet(20)[1]; trainer.IsLearning = false; trainer.TrainClassification(input_test, output_test); error = trainer.GetError(); Console.Out.WriteLine(error); for (int i = 0; i < input_test.Length; i++) { network.SetInput(input_test[i]); Show(new [] { input_test[i][0], network.GetOutput()[0], Math.Sin(input_test[i][0]) }); } }
private double GetControlError(NetworkTrainer networkTrainer, double lambda, double alpha) { networkTrainer.IsLearning = false; networkTrainer.TrainPrediction(test_data, lambda, alpha); double error = Math.Abs(trainer.GetError()); networkTrainer.IsLearning = true; return(error); }
private void buttonTrain_Click(object sender, EventArgs e) { groupPlotting.Enabled = false; trainer = new NetworkTrainer(network); double lambda = double.Parse(textLambda.Text); double alpha = double.Parse(textAlpha.Text); AssignData(); double error = 1; double delta = 1; double required_error = double.Parse(textErrorStop.Text); double required_delta = double.Parse(textDeltaStop.Text); int time_limit = int.Parse(textStopTime.Text) * 1000; int j = 0; Stopwatch stopwatch = new Stopwatch(); stopwatch.Reset(); stopwatch.Start(); // while(error > required_error && (delta >= required_delta) || j == 1) while (error > required_error && (delta >= 0) || j == 1) { trainer.TrainPrediction(train_data, lambda, alpha); double new_error = Math.Abs(trainer.GetError()); delta = error - new_error; error = new_error; j++; if (stopwatch.ElapsedMilliseconds > time_limit) { break; } } textError.Text = Math.Round(error, 5).ToString(); Double control_error = GetControlError(trainer, lambda, alpha); textControlError.Text = Math.Round(control_error, 5).ToString(); textTimes.Text = j.ToString(); groupPlotting.Enabled = true; }
// public static void Main() // { // TrainPrediction(); //// Sinus(); //// TestTanhLearningOnSinus(); //// TestTanhDerivative(); // // } public static void TrainPrediction() { NNetwork network = NNetwork.SigmoidNetwork(new int[] { 5, 1 }); network.RandomizeWeights(-1, 20); NetworkTrainer trainer = new NetworkTrainer(network); List <double> tr = new List <double>(); for (double i = 0; i <= 1; i = i + 0.05) { tr.Add(i); } double[] train_set = tr.ToArray();//new double[] { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 }; double error = 1; double delta = 1; int j = 0; for (; error > 0.01 && !(delta <= 0.00001) || j == 1; j++) { trainer.TrainPrediction(train_set, 0.0001, 0.2); double new_cost = trainer.GetError(); delta = error - new_cost; error = new_cost; } Console.Out.WriteLine(j + ": " + error); for (double i = 0; i <= 0.5; i = i + 0.05) { network.SetInput(new double[] { i + 0.0, i + 0.1, i + 0.2, i + 0.3, i + 0.4 }); Show(new double[] { i + 0.5, network.GetOutput()[0], // network.GetOutput()[1] }); } }