示例#1
0
        private static int DetectSqueezeNet(NcnnDotNet.OpenCV.Mat bgr, List <float> clsScores)
        {
            using (var squeezeNet = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    squeezeNet.Opt.UseVulkanCompute = true;
                }

                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                squeezeNet.LoadParam("squeezenet_v1.1.param");
                squeezeNet.LoadModel("squeezenet_v1.1.bin");

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, 227, 227);
                var meanVals = new[] { 104f, 117f, 123f };
                @in.SubstractMeanNormalize(meanVals, null);

                using var ex = squeezeNet.CreateExtractor();
                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("prob", @out);

                clsScores.Capacity = @out.W;
                for (var j = 0; j < @out.W; j++)
                {
                    clsScores.Add(@out[j]);
                }
            }

            return(0);
        }
示例#2
0
        private static int DetectYoloV3(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var yolov3 = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    yolov3.Opt.UseVulkanCompute = true;
                }

                // original pretrained model from https://github.com/eric612/MobileNet-YOLO
                // param : https://drive.google.com/open?id=1V9oKHP6G6XvXZqhZbzNKL6FI_clRWdC-
                // bin : https://drive.google.com/open?id=1DBcuFCr-856z3FRQznWL_S5h-Aj3RawA
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                yolov3.LoadParam("mobilenetv2_yolov3.param");
                yolov3.LoadModel("mobilenetv2_yolov3.bin");

                const int targetSize = 352;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using (var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize))
                {
                    var meanVals = new[] { 127.5f, 127.5f, 127.5f };
                    var normVals = new[] { 0.007843f, 0.007843f, 0.007843f };
                    @in.SubstractMeanNormalize(meanVals, normVals);

                    using (var ex = yolov3.CreateExtractor())
                    {
                        ex.SetNumThreads(4);

                        ex.Input("data", @in);

                        using (var @out = new Mat())
                        {
                            ex.Extract("detection_out", @out);

                            //     printf("%d %d %d\n", out.w, out.h, out.c);
                            objects.Clear();
                            for (var i = 0; i < @out.H; i++)
                            {
                                var values = @out.Row(i);

                                var @object = new Object();
                                @object.Label       = (int)values[0];
                                @object.Prob        = values[1];
                                @object.Rect.X      = values[2] * imgW;
                                @object.Rect.Y      = values[3] * imgH;
                                @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                                @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                                objects.Add(@object);
                            }
                        }
                    }
                }
            }

            return(0);
        }
示例#3
0
        private static int DetectMobileNetV3(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var mobilenetV3 = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    mobilenetV3.Opt.UseVulkanCompute = true;
                }

                // converted ncnn model from https://github.com/ujsyehao/mobilenetv3-ssd
                mobilenetV3.LoadParam("mobilenetv3_ssdlite_voc.param");
                mobilenetV3.LoadModel("mobilenetv3_ssdlite_voc.bin");

                const int targetSize = 300;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr2Rgb, bgr.Cols, bgr.Rows, targetSize, targetSize);
                var meanVals = new[] { 123.675f, 116.28f, 103.53f };
                var normVals = new[] { 1.0f, 1.0f, 1.0f };
                @in.SubstractMeanNormalize(meanVals, normVals);

                using var ex = mobilenetV3.CreateExtractor();
                ex.SetLiteMode(true);
                ex.SetNumThreads(4);

                ex.Input("input", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label = (int)values[0];
                    @object.Prob  = values[1];

                    // filter out cross-boundary
                    var x1 = Clamp(values[2] * targetSize, 0.0f, targetSize - 1) / targetSize * imgW;
                    var y1 = Clamp(values[3] * targetSize, 0.0f, targetSize - 1) / targetSize * imgH;
                    var x2 = Clamp(values[4] * targetSize, 0.0f, targetSize - 1) / targetSize * imgW;
                    var y2 = Clamp(values[5] * targetSize, 0.0f, targetSize - 1) / targetSize * imgH;

                    @object.Rect.X      = x1;
                    @object.Rect.Y      = y1;
                    @object.Rect.Width  = x2 - x1;
                    @object.Rect.Height = y2 - y1;

                    objects.Add(@object);
                }
            }

            return(0);
        }
示例#4
0
        private static int DetectYoloV2(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var yolov2 = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    yolov2.Opt.UseVulkanCompute = true;
                }

                // original pretrained model from https://github.com/eric612/MobileNet-YOLO
                // https://github.com/eric612/MobileNet-YOLO/blob/master/models/yolov2/mobilenet_yolo_deploy.prototxt
                // https://github.com/eric612/MobileNet-YOLO/blob/master/models/yolov2/mobilenet_yolo_deploy_iter_80000.caffemodel
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                yolov2.LoadParam("mobilenet_yolo.param");
                yolov2.LoadModel("mobilenet_yolo.bin");

                const int targetSize = 416;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize);

                // the Caffe-YOLOv2-Windows style
                // X' = X * scale - mean
                var meanVals = new[] { 1.0f, 1.0f, 1.0f };
                var normVals = new[] { 0.007843f, 0.007843f, 0.007843f };
                @in.SubstractMeanNormalize(null, normVals);
                @in.SubstractMeanNormalize(meanVals, null);

                using var ex = yolov2.CreateExtractor();
                ex.SetNumThreads(4);

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label       = (int)values[0];
                    @object.Prob        = values[1];
                    @object.Rect.X      = values[2] * imgW;
                    @object.Rect.Y      = values[3] * imgH;
                    @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                    @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                    objects.Add(@object);
                }
            }

            return(0);
        }
示例#5
0
        private static int DetectPeleeNet(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects, NcnnDotNet.Mat resized)
        {
            using (var peleenet = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    peleenet.Opt.UseVulkanCompute = true;
                }

                // model is converted from https://github.com/eric612/MobileNet-YOLO
                // and can be downloaded from https://drive.google.com/open?id=1Wt6jKv13sBRMHgrGAJYlOlRF-o80pC0g
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                peleenet.LoadParam("pelee.param");
                peleenet.LoadModel("pelee.bin");

                const int targetSize = 300;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize);
                var meanVals = new[] { 103.9f, 116.7f, 123.6f };
                var normVals = new[] { 0.017f, 0.017f, 0.017f };
                @in.SubstractMeanNormalize(meanVals, normVals);

                using var ex = peleenet.CreateExtractor();
                //ex.SetNumThreads(4);

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label       = (int)values[0];
                    @object.Prob        = values[1];
                    @object.Rect.X      = values[2] * imgW;
                    @object.Rect.Y      = values[3] * imgH;
                    @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                    @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                    objects.Add(@object);
                }

                using var segOut = new Mat();
                ex.Extract("sigmoid", segOut);
                Ncnn.ResizeBilinear(segOut, resized, imgW, imgH);
            }

            return(0);
        }
示例#6
0
        private static int DetectMobileNetV2(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var mobilenetV2 = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    mobilenetV2.Opt.UseVulkanCompute = true;
                }

                // ToDo: Support Custom Layer from C#
                //mobilenetV2.register_custom_layer("Silence", Noop_layer_creator);

                // original pretrained model from https://github.com/chuanqi305/MobileNetv2-SSDLite
                // https://github.com/chuanqi305/MobileNetv2-SSDLite/blob/master/ssdlite/voc/deploy.prototxt
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                mobilenetV2.LoadParam("mobilenetv2_ssdlite_voc.param");
                mobilenetV2.LoadModel("mobilenetv2_ssdlite_voc.bin");

                const int targetSize = 300;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize);
                var meanVals = new[] { 127.5f, 127.5f, 127.5f };
                var normVals = new[] { (float)(1.0 / 127.5), (float)(1.0 / 127.5), (float)(1.0 / 127.5) };
                @in.SubstractMeanNormalize(meanVals, normVals);

                using var ex = mobilenetV2.CreateExtractor();
                ex.SetLiteMode(true);
                ex.SetNumThreads(4);

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label       = (int)values[0];
                    @object.Prob        = values[1];
                    @object.Rect.X      = values[2] * imgW;
                    @object.Rect.Y      = values[3] * imgH;
                    @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                    @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                    objects.Add(@object);
                }
            }

            return(0);
        }
示例#7
0
        private static int DetectSqueezeNet(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var squeezenet = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    squeezenet.Opt.UseVulkanCompute = true;
                }

                // original pretrained model from https://github.com/chuanqi305/SqueezeNet-SSD
                // squeezenet_ssd_voc_deploy.prototxt
                // https://drive.google.com/open?id=0B3gersZ2cHIxdGpyZlZnbEQ5Snc
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                squeezenet.LoadParam("squeezenet_ssd_voc.param");
                squeezenet.LoadModel("squeezenet_ssd_voc.bin");

                const int targetSize = 300;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize);
                var meanVals = new[] { 104f, 117f, 123f };
                @in.SubstractMeanNormalize(meanVals, null);

                using var ex = squeezenet.CreateExtractor();
                ex.SetNumThreads(4);

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label       = (int)values[0];
                    @object.Prob        = values[1];
                    @object.Rect.X      = values[2] * imgW;
                    @object.Rect.Y      = values[3] * imgH;
                    @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                    @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                    objects.Add(@object);
                }
            }

            return(0);
        }
示例#8
0
        private static int DetectMobileNet(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var mobilenet = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    mobilenet.Opt.UseVulkanCompute = true;
                }

                // model is converted from https://github.com/chuanqi305/MobileNet-SSD
                // and can be downloaded from https://drive.google.com/open?id=0ByaKLD9QaPtucWk0Y0dha1VVY0U
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                mobilenet.LoadParam("mobilenet_ssd_voc_ncnn.param");
                mobilenet.LoadModel("mobilenet_ssd_voc_ncnn.bin");

                const int targetSize = 300;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, targetSize, targetSize);
                var meanVals = new[] { 127.5f, 127.5f, 127.5f };
                var normVals = new[] { (float)(1.0 / 127.5), (float)(1.0 / 127.5), (float)(1.0 / 127.5) };
                @in.SubstractMeanNormalize(meanVals, normVals);

                using var ex = mobilenet.CreateExtractor();
                //ex.SetNumThreads(4);

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("detection_out", @out);

                //     printf("%d %d %d\n", out.w, out.h, out.c);
                objects.Clear();
                for (var i = 0; i < @out.H; i++)
                {
                    var values = @out.Row(i);

                    var @object = new Object();
                    @object.Label       = (int)values[0];
                    @object.Prob        = values[1];
                    @object.Rect.X      = values[2] * imgW;
                    @object.Rect.Y      = values[3] * imgH;
                    @object.Rect.Width  = values[4] * imgW - @object.Rect.X;
                    @object.Rect.Height = values[5] * imgH - @object.Rect.Y;

                    objects.Add(@object);
                }
            }

            return(0);
        }
示例#9
0
        private static int DetectShuffleNetV2(NcnnDotNet.OpenCV.Mat bgr, List <float> clsScores)
        {
            using (var shuffleNetV2 = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    shuffleNetV2.Opt.UseVulkanCompute = true;
                }

                // https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe
                // models can be downloaded from https://github.com/miaow1988/ShuffleNet_V2_pytorch_caffe/releases
                shuffleNetV2.LoadParam("shufflenet_v2_x0.5.param");
                shuffleNetV2.LoadModel("shufflenet_v2_x0.5.bin");

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, 224, 224);
                var normVals = new[] { 1 / 255.0f, 1 / 255.0f, 1 / 255.0f };
                @in.SubstractMeanNormalize(null, normVals);

                using var ex = shuffleNetV2.CreateExtractor();
                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("fc", @out);

                // manually call softmax on the fc output
                // convert result into probability
                // skip if your model already has softmax operation
                {
                    using var softmax = Ncnn.CreateLayer("Softmax");

                    using var pd = new ParamDict();
                    softmax.LoadParam(pd);

                    softmax.ForwardInplace(@out, shuffleNetV2.Opt);
                }

                using var @out2 = @out.Reshape(@out.W * @out.H * @out.C);

                clsScores.Capacity = @out2.W;
                for (var j = 0; j < @out2.W; j++)
                {
                    clsScores.Add(@out2[j]);
                }
            }

            return(0);
        }
示例#10
0
        private static int DetectRetinaFace(NcnnDotNet.OpenCV.Mat bgr, List <FaceObject> faceObjects)
        {
            using (var retinaFace = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    retinaFace.Opt.UseVulkanCompute = true;
                }

                // model is converted from
                // https://github.com/deepinsight/insightface/tree/master/RetinaFace#retinaface-pretrained-models
                // https://github.com/deepinsight/insightface/issues/669
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                // retinaface.load_param("retinaface-R50.param");
                // retinaface.load_model("retinaface-R50.bin");
                retinaFace.LoadParam("mnet.25-opt.param");
                retinaFace.LoadModel("mnet.25-opt.bin");

                const float probThreshold = 0.8f;
                const float nmsThreshold  = 0.4f;

                var imgW = bgr.Cols;
                var imgH = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr2Rgb, bgr.Cols, bgr.Rows, imgW, imgH);

                using var ex = retinaFace.CreateExtractor();

                ex.Input("data", @in);

                var faceProposals = new List <FaceObject>();

                // stride 32
                {
                    using var scoreBlob    = new Mat();
                    using var bboxBlob     = new Mat();
                    using var landmarkBlob = new Mat();
                    ex.Extract("face_rpn_cls_prob_reshape_stride32", scoreBlob);
                    ex.Extract("face_rpn_bbox_pred_stride32", bboxBlob);
                    ex.Extract("face_rpn_landmark_pred_stride32", landmarkBlob);

                    const int baseSize   = 16;
                    const int featStride = 32;
                    using var ratios  = new Mat(1);
                    ratios[0]         = 1.0f;
                    using var scales  = new Mat(2);
                    scales[0]         = 32.0f;
                    scales[1]         = 16.0f;
                    using var anchors = GenerateAnchors(baseSize, ratios, scales);

                    var faceObjects32 = new List <FaceObject>();
                    GenerateProposals(anchors, featStride, scoreBlob, bboxBlob, landmarkBlob, probThreshold, faceObjects32);

                    faceProposals.AddRange(faceObjects32);
                }

                // stride 16
                {
                    using var scoreBlob    = new Mat();
                    using var bboxBlob     = new Mat();
                    using var landmarkBlob = new Mat();
                    ex.Extract("face_rpn_cls_prob_reshape_stride16", scoreBlob);
                    ex.Extract("face_rpn_bbox_pred_stride16", bboxBlob);
                    ex.Extract("face_rpn_landmark_pred_stride16", landmarkBlob);

                    const int baseSize   = 16;
                    const int featStride = 16;
                    using var ratios  = new Mat(1);
                    ratios[0]         = 1.0f;
                    using var scales  = new Mat(2);
                    scales[0]         = 8.0f;
                    scales[1]         = 4.0f;
                    using var anchors = GenerateAnchors(baseSize, ratios, scales);

                    var faceObjects16 = new List <FaceObject>();
                    GenerateProposals(anchors, featStride, scoreBlob, bboxBlob, landmarkBlob, probThreshold, faceObjects16);

                    faceProposals.AddRange(faceObjects16);
                }

                // stride 8
                {
                    using var scoreBlob    = new Mat();
                    using var bboxBlob     = new Mat();
                    using var landmarkBlob = new Mat();
                    ex.Extract("face_rpn_cls_prob_reshape_stride8", scoreBlob);
                    ex.Extract("face_rpn_bbox_pred_stride8", bboxBlob);
                    ex.Extract("face_rpn_landmark_pred_stride8", landmarkBlob);

                    const int baseSize   = 16;
                    const int featStride = 8;
                    using var ratios  = new Mat(1);
                    ratios[0]         = 1.0f;
                    using var scales  = new Mat(2);
                    scales[0]         = 2.0f;
                    scales[1]         = 1.0f;
                    using var anchors = GenerateAnchors(baseSize, ratios, scales);

                    var faceObjects8 = new List <FaceObject>();
                    GenerateProposals(anchors, featStride, scoreBlob, bboxBlob, landmarkBlob, probThreshold, faceObjects8);

                    faceProposals.AddRange(faceObjects8);
                }

                // sort all proposals by score from highest to lowest
                QsortDescentInplace(faceProposals);

                // apply nms with nms_threshold
                var picked = new List <int>();
                NmsSortedBBoxes(faceProposals, picked, nmsThreshold);

                var faceCount = picked.Count;

                // resolve point from heatmap
                faceObjects.AddRange(new FaceObject[faceCount]);
                for (var i = 0; i < faceCount; i++)
                {
                    faceObjects[i] = faceProposals[picked[i]];

                    // clip to image size
                    var x0 = faceProposals[i].Rect.X;
                    var y0 = faceProposals[i].Rect.Y;
                    var x1 = x0 + faceProposals[i].Rect.Width;
                    var y1 = y0 + faceProposals[i].Rect.Height;

                    x0 = Math.Max(Math.Min(x0, (float)imgW - 1), 0.0f);
                    y0 = Math.Max(Math.Min(y0, (float)imgH - 1), 0.0f);
                    x1 = Math.Max(Math.Min(x1, (float)imgW - 1), 0.0f);
                    y1 = Math.Max(Math.Min(y1, (float)imgH - 1), 0.0f);

                    faceObjects[i].Rect.X      = x0;
                    faceObjects[i].Rect.Y      = y0;
                    faceObjects[i].Rect.Width  = x1 - x0;
                    faceObjects[i].Rect.Height = y1 - y0;
                }
            }

            return(0);
        }
示例#11
0
        private static int DetectFasterRCNN(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var fasterRcnn = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    fasterRcnn.Opt.UseVulkanCompute = true;
                }

                // original pretrained model from https://github.com/rbgirshick/py-faster-rcnn
                // py-faster-rcnn/models/pascal_voc/ZF/faster_rcnn_alt_opt/faster_rcnn_test.pt
                // https://dl.dropboxusercontent.com/s/o6ii098bu51d139/faster_rcnn_models.tgz?dl=0
                // ZF_faster_rcnn_final.caffemodel
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                fasterRcnn.LoadParam("ZF_faster_rcnn_final.param");
                fasterRcnn.LoadModel("ZF_faster_rcnn_final.bin");

                // hyper parameters taken from
                // py-faster-rcnn/lib/fast_rcnn/config.py
                // py-faster-rcnn/lib/fast_rcnn/test.py
                const int targetSize = 600; // __C.TEST.SCALES


                const int   maxPerImage      = 100;
                const float confidenceThresh = 0.05f;

                const float nmsThreshold = 0.3f;// __C.TEST.NMS

                // scale to target detect size
                var   w = bgr.Cols;
                var   h = bgr.Rows;
                float scale;
                if (w < h)
                {
                    scale = (float)targetSize / w;
                    w     = targetSize;
                    h     = (int)(h * scale);
                }
                else
                {
                    scale = (float)targetSize / h;
                    h     = targetSize;
                    w     = (int)(w * scale);
                }

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, w, h);

                var meanVals = new[] { 102.9801f, 115.9465f, 122.7717f };
                @in.SubstractMeanNormalize(meanVals, null);

                using var im_info = new Mat(3);
                im_info[0]        = h;
                im_info[1]        = w;
                im_info[2]        = scale;

                // step1, extract feature and all rois
                using var ex1 = fasterRcnn.CreateExtractor();

                ex1.Input("data", @in);
                ex1.Input("im_info", im_info);

                using var conv5Relu5 = new Mat(); // feature
                using var rois       = new Mat(); // all rois
                ex1.Extract("conv5_relu5", conv5Relu5);
                ex1.Extract("rois", rois);

                // step2, extract bbox and score for each roi
                var classCandidates = new List <List <Object> >();
                for (var i = 0; i < rois.C; i++)
                {
                    using var ex2 = fasterRcnn.CreateExtractor();

                    using var roi = rois.Channel(i); // get single roi
                    ex2.Input("conv5_relu5", conv5Relu5);
                    ex2.Input("rois", roi);

                    using var bboxPred = new Mat();
                    using var clsProb  = new Mat();
                    ex2.Extract("bbox_pred", bboxPred);
                    ex2.Extract("cls_prob", clsProb);

                    var numClass = clsProb.W;

                    // There is no equivalent to std::vector::resize  in C#
                    Resize(classCandidates, numClass);

                    // find class id with highest score
                    var label = 0;
                    var score = 0.0f;
                    for (var j = 0; j < numClass; j++)
                    {
                        var classScore = clsProb[j];
                        if (classScore > score)
                        {
                            label = j;
                            score = classScore;
                        }
                    }

                    // ignore background or low score
                    if (label == 0 || score <= confidenceThresh)
                    {
                        continue;
                    }

                    //         fprintf(stderr, "%d = %f\n", label, score);

                    // unscale to image size
                    var x1 = roi[0] / scale;
                    var y1 = roi[1] / scale;
                    var x2 = roi[2] / scale;
                    var y2 = roi[3] / scale;

                    var pbW = x2 - x1 + 1;
                    var pbH = y2 - y1 + 1;

                    // apply bbox regression
                    var dx = bboxPred[label * 4];
                    var dy = bboxPred[label * 4 + 1];
                    var dw = bboxPred[label * 4 + 2];
                    var dh = bboxPred[label * 4 + 3];

                    var cx = x1 + pbW * 0.5f;
                    var cy = y1 + pbH * 0.5f;

                    var objCx = cx + pbW * dx;
                    var objCy = cy + pbH * dy;

                    var objW = pbW * Math.Exp(dw);
                    var objH = pbH * Math.Exp(dh);

                    var objX1 = (float)(objCx - objW * 0.5f);
                    var objY1 = (float)(objCy - objH * 0.5f);
                    var objX2 = (float)(objCx + objW * 0.5f);
                    var objY2 = (float)(objCy + objH * 0.5f);

                    // clip
                    objX1 = Math.Max(Math.Min(objX1, bgr.Cols - 1), 0.0f);
                    objY1 = Math.Max(Math.Min(objY1, bgr.Rows - 1), 0.0f);
                    objX2 = Math.Max(Math.Min(objX2, bgr.Cols - 1), 0.0f);
                    objY2 = Math.Max(Math.Min(objY2, bgr.Rows - 1), 0.0f);

                    // append object
                    var obj = new Object
                    {
                        Rect  = new Rect <float>(objX1, objY1, objX2 - objX1 + 1, objY2 - objY1 + 1),
                        Label = label,
                        Prob  = score
                    };

                    classCandidates[label].Add(obj);
                }


                // post process
                objects.Clear();
                for (var i = 0; i < (int)classCandidates.Count; i++)
                {
                    var candidates = classCandidates[i];

                    QsortDescentInplace(candidates);

                    var picked = new List <int>();
                    NmsSortedBBoxes(candidates, picked, nmsThreshold);

                    for (var j = 0; j < picked.Count; j++)
                    {
                        var z = picked[j];
                        objects.Add(candidates[z]);
                    }
                }

                QsortDescentInplace(objects);

                if (maxPerImage > 0 && maxPerImage < objects.Count)
                {
                    Resize(objects, maxPerImage);
                }
            }

            return(0);
        }
示例#12
0
        private static int DetectPoseNet(NcnnDotNet.OpenCV.Mat bgr, List <KeyPoint> keyPoints)
        {
            using (var poseNet = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    poseNet.Opt.UseVulkanCompute = true;
                }

                // the simple baseline human pose estimation from gluon-cv
                // https://gluon-cv.mxnet.io/build/examples_pose/demo_simple_pose.html
                // mxnet model exported via
                //      pose_net.hybridize()
                //      pose_net.export('pose')
                // then mxnet2ncnn
                // the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models
                poseNet.LoadParam("pose.param");
                poseNet.LoadModel("pose.bin");

                var w = bgr.Cols;
                var h = bgr.Rows;

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr2Rgb, bgr.Cols, bgr.Rows, 192, 256);

                // transforms.ToTensor(),
                // transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
                // R' = (R / 255 - 0.485) / 0.229 = (R - 0.485 * 255) / 0.229 / 255
                // G' = (G / 255 - 0.456) / 0.224 = (G - 0.456 * 255) / 0.224 / 255
                // B' = (B / 255 - 0.406) / 0.225 = (B - 0.406 * 255) / 0.225 / 255
                var meanVals = new[] { 0.485f * 255.0f, 0.456f * 255.0f, 0.406f * 255.0f };
                var normVals = new[] { 1 / 0.229f / 255.0f, 1 / 0.224f / 255.0f, 1 / 0.225f / 255.0f };
                @in.SubstractMeanNormalize(meanVals, normVals);

                using var ex = poseNet.CreateExtractor();

                ex.Input("data", @in);

                using var @out = new Mat();
                ex.Extract("conv3_fwd", @out);

                // resolve point from heatmap
                keyPoints.Clear();
                for (var p = 0; p < @out.H; p++)
                {
                    using var m = @out.Channel(p);

                    var maxProb = 0f;
                    var maxX    = 0;
                    var maxY    = 0;
                    for (var y = 0; y < @out.H; y++)
                    {
                        var ptr = m.Row(y);
                        for (var x = 0; x < @out.W; x++)
                        {
                            var prob = ptr[x];
                            if (prob > maxProb)
                            {
                                maxProb = prob;
                                maxX    = x;
                                maxY    = y;
                            }
                        }
                    }

                    var keyPoint = new KeyPoint
                    {
                        P    = new Point <float>(maxX * w / (float)@out.W, maxY * h / (float)@out.H),
                        Prob = maxProb
                    };
                    keyPoints.Add(keyPoint);
                }
            }

            return(0);
        }
示例#13
0
        private static int DetectRFCN(NcnnDotNet.OpenCV.Mat bgr, List <Object> objects)
        {
            using (var rfcn = new Net())
            {
                if (Ncnn.IsSupportVulkan)
                {
                    rfcn.Opt.UseVulkanCompute = true;
                }

                // original pretrained model from https://github.com/YuwenXiong/py-R-FCN
                // https://github.com/YuwenXiong/py-R-FCN/blob/master/models/pascal_voc/ResNet-50/rfcn_end2end/test_agnostic.prototxt
                // https://1drv.ms/u/s!AoN7vygOjLIQqUWHpY67oaC7mopf
                // resnet50_rfcn_final.caffemodel
                rfcn.LoadParam("rfcn_end2end.param");
                rfcn.LoadModel("rfcn_end2end.bin");

                const int targetSize = 224;

                const int   maxPerImage      = 100;
                const float confidenceThresh = 0.6f; // CONF_THRESH

                const float nmsThreshold = 0.3f;     // NMS_THRESH

                // scale to target detect size
                var   w = bgr.Cols;
                var   h = bgr.Rows;
                float scale;
                if (w < h)
                {
                    scale = (float)targetSize / w;
                    w     = targetSize;
                    h     = (int)(h * scale);
                }
                else
                {
                    scale = (float)targetSize / h;
                    h     = targetSize;
                    w     = (int)(w * scale);
                }

                using var @in = Mat.FromPixelsResize(bgr.Data, PixelType.Bgr, bgr.Cols, bgr.Rows, w, h);

                var meanVals = new[] { 102.9801f, 115.9465f, 122.7717f };
                @in.SubstractMeanNormalize(meanVals, null);

                using var im_info = new Mat(3);
                im_info[0]        = h;
                im_info[1]        = w;
                im_info[2]        = scale;

                // step1, extract feature and all rois
                using var ex1 = rfcn.CreateExtractor();

                ex1.Input("data", @in);
                ex1.Input("im_info", im_info);

                using var rfcnCls  = new Mat();
                using var rfcnBBox = new Mat();
                using var rois     = new Mat();// all rois
                ex1.Extract("rfcn_cls", rfcnCls);
                ex1.Extract("rfcn_bbox", rfcnBBox);
                ex1.Extract("rois", rois);

                // step2, extract bbox and score for each roi
                var classCandidates = new List <List <Object> >();
                for (var i = 0; i < rois.C; i++)
                {
                    using var ex2 = rfcn.CreateExtractor();

                    using var roi = rois.Channel(i); // get single roi
                    ex2.Input("rfcn_cls", rfcnCls);
                    ex2.Input("rfcn_bbox", rfcnBBox);
                    ex2.Input("rois", roi);


                    using var bboxPred = new Mat();
                    using var clsProb  = new Mat();
                    ex2.Extract("bbox_pred", bboxPred);
                    ex2.Extract("cls_prob", clsProb);

                    var numClass = clsProb.W;

                    // There is no equivalent to std::vector::resize  in C#
                    Resize(classCandidates, numClass);

                    // find class id with highest score
                    var label = 0;
                    var score = 0.0f;
                    for (var j = 0; j < numClass; j++)
                    {
                        var classScore = clsProb[j];
                        if (classScore > score)
                        {
                            label = j;
                            score = classScore;
                        }
                    }

                    // ignore background or low score
                    if (label == 0 || score <= confidenceThresh)
                    {
                        continue;
                    }

                    //         fprintf(stderr, "%d = %f\n", label, score);

                    // unscale to image size
                    var x1 = roi[0] / scale;
                    var y1 = roi[1] / scale;
                    var x2 = roi[2] / scale;
                    var y2 = roi[3] / scale;

                    var pbW = x2 - x1 + 1;
                    var pbH = y2 - y1 + 1;

                    // apply bbox regression
                    var dx = bboxPred[4];
                    var dy = bboxPred[4 + 1];
                    var dw = bboxPred[4 + 2];
                    var dh = bboxPred[4 + 3];

                    var cx = x1 + pbW * 0.5f;
                    var cy = y1 + pbH * 0.5f;

                    var objCx = cx + pbW * dx;
                    var objCy = cy + pbH * dy;

                    var objW = pbW * Math.Exp(dw);
                    var objH = pbH * Math.Exp(dh);

                    var objX1 = (float)(objCx - objW * 0.5f);
                    var objY1 = (float)(objCy - objH * 0.5f);
                    var objX2 = (float)(objCx + objW * 0.5f);
                    var objY2 = (float)(objCy + objH * 0.5f);

                    // clip
                    objX1 = Math.Max(Math.Min(objX1, bgr.Cols - 1), 0.0f);
                    objY1 = Math.Max(Math.Min(objY1, bgr.Rows - 1), 0.0f);
                    objX2 = Math.Max(Math.Min(objX2, bgr.Cols - 1), 0.0f);
                    objY2 = Math.Max(Math.Min(objY2, bgr.Rows - 1), 0.0f);

                    // append object
                    var obj = new Object
                    {
                        Rect  = new Rect <float>(objX1, objY1, objX2 - objX1 + 1, objY2 - objY1 + 1),
                        Label = label,
                        Prob  = score
                    };

                    classCandidates[label].Add(obj);
                }


                // post process
                objects.Clear();
                for (var i = 0; i < (int)classCandidates.Count; i++)
                {
                    var candidates = classCandidates[i];

                    QsortDescentInplace(candidates);

                    var picked = new List <int>();
                    NmsSortedBBoxes(candidates, picked, nmsThreshold);

                    for (var j = 0; j < picked.Count; j++)
                    {
                        var z = picked[j];
                        objects.Add(candidates[z]);
                    }
                }

                QsortDescentInplace(objects);

                if (maxPerImage > 0 && maxPerImage < objects.Count)
                {
                    Resize(objects, maxPerImage);
                }
            }

            return(0);
        }