private void Test() { UnityEngine.Profiling.Profiler.BeginSample("Test"); int correctTestLabels = 0; for (int i = 0; i < DataManager.Test.NumImgs; i++) { int lbl = (int)DataManager.Test.Labels[i]; var handle = DataManager.CopyInput(_net.Inputs, DataManager.Test, i); handle = NeuralJobs.ForwardPass(_net, handle); handle.Complete(); int predictedLbl = NeuralMath.ArgMax(_net.Last.Outputs); if (predictedLbl == lbl) { correctTestLabels++; } } float accuracy = correctTestLabels / (float)DataManager.Test.NumImgs; Debug.Log("Test Accuracy: " + System.Math.Round(accuracy * 100f, 4) + "%"); UnityEngine.Profiling.Profiler.EndSample(); }
private void TrainMinibatch() { UnityEngine.Profiling.Profiler.BeginSample("TrainMiniBatch"); float avgTrainCost = 0f; DataManager.GetBatch(_batch, DataManager.Train, ref _rng); var handle = NeuralJobs.ZeroGradients(_gradientsAvg); for (int i = 0; i < _batch.Length; i++) { handle = DataManager.CopyInput(_net.Inputs, DataManager.Train, _batch[i], handle); handle = NeuralJobs.ForwardPass(_net, handle); int lbl = (int)DataManager.Train.Labels[_batch[i]]; handle.Complete(); NeuralMath.ClassToOneHot(lbl, _targetOutputs); // Todo: job handle = NeuralJobs.BackwardsPass(_net, _gradients, _targetOutputs, handle); handle = NeuralJobs.AddGradients(_gradients, _gradientsAvg, handle); handle.Complete(); // Todo: backwards pass logic now does this, don't redo, just check NeuralMath.Subtract(_targetOutputs, _net.Last.Outputs, _dCdO); float cost = NeuralMath.Cost(_dCdO); avgTrainCost += cost; } // Update weights and biases according to averaged gradient and learning rate _rate = 3.0f / (float)BatchSize; handle = NeuralJobs.UpdateParameters(_net, _gradientsAvg, _rate, handle); handle.Complete(); // Todo: Is this one needed? _batchCount++; avgTrainCost /= (float)BatchSize; _trainingLoss = (float)System.Math.Round(avgTrainCost, 6); UnityEngine.Profiling.Profiler.EndSample(); }