/// <summary> /// Runs the module. /// </summary> /// <param name="args">The command line arguments for the module.</param> /// <param name="usagePrefix">The prefix to print before the usage string.</param> /// <returns>True if the run was successful, false otherwise.</returns> public override bool Run(string[] args, string usagePrefix) { string testSetFile = string.Empty; string modelFile = string.Empty; string predictionsFile = string.Empty; var parser = new CommandLineParser(); parser.RegisterParameterHandler("--test-set", "FILE", "File with test data", v => testSetFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--model", "FILE", "File with a trained multi-class Bayes point machine model", v => modelFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--predictions", "FILE", "File to store predictions for the test data", v => predictionsFile = v, CommandLineParameterType.Required); if (!parser.TryParse(args, usagePrefix)) { return(false); } var testSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(testSetFile); BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(testSet); var classifier = BayesPointMachineClassifier.LoadMulticlassClassifier <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string, IDictionary <string, double> >(modelFile); // Predict labels var predictions = classifier.PredictDistribution(testSet); // Write labels to file ClassifierPersistenceUtils.SaveLabelDistributions(predictionsFile, predictions); return(true); }
/// <summary> /// Runs the module. /// </summary> /// <param name="args">The command line arguments for the module.</param> /// <param name="usagePrefix">The prefix to print before the usage string.</param> /// <returns>True if the run was successful, false otherwise.</returns> public override bool Run(string[] args, string usagePrefix) { string trainingSetFile = string.Empty; string modelFile = string.Empty; int iterationCount = BayesPointMachineClassifierTrainingSettings.IterationCountDefault; int batchCount = BayesPointMachineClassifierTrainingSettings.BatchCountDefault; bool computeModelEvidence = BayesPointMachineClassifierTrainingSettings.ComputeModelEvidenceDefault; var parser = new CommandLineParser(); parser.RegisterParameterHandler("--training-set", "FILE", "File with training data", v => trainingSetFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--model", "FILE", "File to store the trained binary Bayes point machine model", v => modelFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--iterations", "NUM", "Number of training algorithm iterations (defaults to " + iterationCount + ")", v => iterationCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--batches", "NUM", "Number of batches to split the training data into (defaults to " + batchCount + ")", v => batchCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--compute-evidence", "Compute model evidence (defaults to " + computeModelEvidence + ")", () => computeModelEvidence = true); if (!parser.TryParse(args, usagePrefix)) { return(false); } var trainingSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(trainingSetFile); BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(trainingSet); var featureSet = trainingSet.Count > 0 ? trainingSet.First().FeatureSet : null; var mapping = new ClassifierMapping(featureSet); var classifier = BayesPointMachineClassifier.CreateBinaryClassifier(mapping); classifier.Settings.Training.IterationCount = iterationCount; classifier.Settings.Training.BatchCount = batchCount; classifier.Settings.Training.ComputeModelEvidence = computeModelEvidence; classifier.Train(trainingSet); if (classifier.Settings.Training.ComputeModelEvidence) { Console.WriteLine("Log evidence = {0,10:0.0000}", classifier.LogModelEvidence); } classifier.Save(modelFile); return(true); }
/// <summary> /// Runs the module. /// </summary> /// <param name="args">The command line arguments for the module.</param> /// <param name="usagePrefix">The prefix to print before the usage string.</param> /// <returns>True if the run was successful, false otherwise.</returns> public override bool Run(string[] args, string usagePrefix) { string trainingSetFile = string.Empty; string inputModelFile = string.Empty; string outputModelFile = string.Empty; int iterationCount = BayesPointMachineClassifierTrainingSettings.IterationCountDefault; int batchCount = BayesPointMachineClassifierTrainingSettings.BatchCountDefault; var parser = new CommandLineParser(); parser.RegisterParameterHandler("--training-set", "FILE", "File with training data", v => trainingSetFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--input-model", "FILE", "File with the trained multi-class Bayes point machine model", v => inputModelFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--model", "FILE", "File to store the incrementally trained multi-class Bayes point machine model", v => outputModelFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--iterations", "NUM", "Number of training algorithm iterations (defaults to " + iterationCount + ")", v => iterationCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--batches", "NUM", "Number of batches to split the training data into (defaults to " + batchCount + ")", v => batchCount = v, CommandLineParameterType.Optional); if (!parser.TryParse(args, usagePrefix)) { return(false); } var trainingSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(trainingSetFile); BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(trainingSet); var classifier = BayesPointMachineClassifier.LoadMulticlassClassifier <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string, IDictionary <string, double> >(inputModelFile); classifier.Settings.Training.IterationCount = iterationCount; classifier.Settings.Training.BatchCount = batchCount; classifier.TrainIncremental(trainingSet); classifier.Save(outputModelFile); return(true); }
/// <summary> /// Runs the module. /// </summary> /// <param name="args">The command line arguments for the module.</param> /// <param name="usagePrefix">The prefix to print before the usage string.</param> /// <returns>True if the run was successful, false otherwise.</returns> public override bool Run(string[] args, string usagePrefix) { string dataSetFile = string.Empty; string resultsFile = string.Empty; int crossValidationFoldCount = 5; int iterationCount = BayesPointMachineClassifierTrainingSettings.IterationCountDefault; int batchCount = BayesPointMachineClassifierTrainingSettings.BatchCountDefault; bool computeModelEvidence = BayesPointMachineClassifierTrainingSettings.ComputeModelEvidenceDefault; var parser = new CommandLineParser(); parser.RegisterParameterHandler("--data-set", "FILE", "File with training data", v => dataSetFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--results", "FILE", "File with cross-validation results", v => resultsFile = v, CommandLineParameterType.Required); parser.RegisterParameterHandler("--folds", "NUM", "Number of cross-validation folds (defaults to " + crossValidationFoldCount + ")", v => crossValidationFoldCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--iterations", "NUM", "Number of training algorithm iterations (defaults to " + iterationCount + ")", v => iterationCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--batches", "NUM", "Number of batches to split the training data into (defaults to " + batchCount + ")", v => batchCount = v, CommandLineParameterType.Optional); parser.RegisterParameterHandler("--compute-evidence", "Compute model evidence (defaults to " + computeModelEvidence + ")", () => computeModelEvidence = true); if (!parser.TryParse(args, usagePrefix)) { return(false); } // Load and shuffle data var dataSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(dataSetFile); BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(dataSet); Rand.Restart(562); Rand.Shuffle(dataSet); // Create evaluator var evaluatorMapping = Mappings.Classifier.ForEvaluation(); var evaluator = new ClassifierEvaluator <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string>(evaluatorMapping); // Create performance metrics var accuracy = new List <double>(); var negativeLogProbability = new List <double>(); var auc = new List <double>(); var evidence = new List <double>(); var iterationCounts = new List <double>(); var trainingTime = new List <double>(); // Run cross-validation int validationSetSize = dataSet.Count / crossValidationFoldCount; Console.WriteLine("Running {0}-fold cross-validation on {1}", crossValidationFoldCount, dataSetFile); // TODO: Use chained mapping to implement cross-validation for (int fold = 0; fold < crossValidationFoldCount; fold++) { // Construct training and validation sets for fold int validationSetStart = fold * validationSetSize; int validationSetEnd = (fold + 1 == crossValidationFoldCount) ? dataSet.Count : (fold + 1) * validationSetSize; var trainingSet = new List <LabeledFeatureValues>(); var validationSet = new List <LabeledFeatureValues>(); for (int instance = 0; instance < dataSet.Count; instance++) { if (validationSetStart <= instance && instance < validationSetEnd) { validationSet.Add(dataSet[instance]); } else { trainingSet.Add(dataSet[instance]); } } // Print info Console.WriteLine(" Fold {0} [validation set instances {1} - {2}]", fold + 1, validationSetStart, validationSetEnd - 1); // Create classifier var classifier = BayesPointMachineClassifier.CreateBinaryClassifier(Mappings.Classifier); classifier.Settings.Training.IterationCount = iterationCount; classifier.Settings.Training.BatchCount = batchCount; classifier.Settings.Training.ComputeModelEvidence = computeModelEvidence; int currentIterationCount = 0; classifier.IterationChanged += (sender, eventArgs) => { currentIterationCount = eventArgs.CompletedIterationCount; }; // Train classifier var stopWatch = new Stopwatch(); stopWatch.Start(); classifier.Train(trainingSet); stopWatch.Stop(); // Produce predictions var predictions = classifier.PredictDistribution(validationSet).ToList(); var predictedLabels = predictions.Select( prediction => prediction.Aggregate((aggregate, next) => next.Value > aggregate.Value ? next : aggregate).Key).ToList(); // Iteration count iterationCounts.Add(currentIterationCount); // Training time trainingTime.Add(stopWatch.ElapsedMilliseconds); // Compute accuracy accuracy.Add(1 - (evaluator.Evaluate(validationSet, predictedLabels, Metrics.ZeroOneError) / predictions.Count)); // Compute mean negative log probability negativeLogProbability.Add(evaluator.Evaluate(validationSet, predictions, Metrics.NegativeLogProbability) / predictions.Count); // Compute M-measure (averaged pairwise AUC) auc.Add(evaluator.AreaUnderRocCurve(validationSet, predictions)); // Compute log evidence if desired evidence.Add(computeModelEvidence ? classifier.LogModelEvidence : double.NaN); // Persist performance metrics Console.WriteLine( " Accuracy = {0,5:0.0000} NegLogProb = {1,5:0.0000} AUC = {2,5:0.0000}{3} Iterations = {4} Training time = {5}", accuracy[fold], negativeLogProbability[fold], auc[fold], computeModelEvidence ? string.Format(" Log evidence = {0,5:0.0000}", evidence[fold]) : string.Empty, iterationCounts[fold], BayesPointMachineClassifierModuleUtilities.FormatElapsedTime(trainingTime[fold])); BayesPointMachineClassifierModuleUtilities.SavePerformanceMetrics( resultsFile, accuracy, negativeLogProbability, auc, evidence, iterationCounts, trainingTime); } return(true); }