示例#1
0
 /// <summary>EP message to <c>list</c>.</summary>
 /// <param name="Buffer">Buffer <c>Buffer</c>.</param>
 /// <param name="to_list">Previous outgoing message to <c>list</c>.</param>
 /// <param name="IndexOfMaximumDouble">Constant value for <c>indexOfMaximumDouble</c>.</param>
 /// <returns>The outgoing EP message to the <c>list</c> argument.</returns>
 /// <remarks>
 ///   <para>The outgoing message is the factor viewed as a function of <c>list</c> conditioned on the given values.</para>
 /// </remarks>
 /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
 public static GaussianList listAverageConditional <GaussianList>(
     IndexOfMaximumBuffer Buffer, GaussianList to_list, int IndexOfMaximumDouble)
     where GaussianList : IList <Gaussian>
 {
     to_list.SetTo(Buffer.to_list);
     return(to_list);
 }
示例#2
0
        /// <summary>Update the buffer <c>Buffer</c>.</summary>
        /// <param name="Buffer">Buffer <c>Buffer</c>.</param>
        /// <param name="list">Incoming message from <c>list</c>.</param>
        /// <param name="IndexOfMaximumDouble">Constant value for <c>indexOfMaximumDouble</c>.</param>
        /// <returns>New value of buffer <c>Buffer</c>.</returns>
        /// <remarks>
        ///   <para />
        /// </remarks>
        /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
        public static IndexOfMaximumBuffer Buffer <GaussianList>(
            IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble) // redundant parameters required for correct dependency graph
            where GaussianList : IList <Gaussian>
        {
            var      max_marginal = Buffer.to_list[IndexOfMaximumDouble] * list[IndexOfMaximumDouble];
            Gaussian product      = Gaussian.Uniform();

            //var order = Rand.Perm(list.Count);
            for (int i = 0; i < list.Count; i++)
            {
                //int c = order[i];
                int c = i;
                if (c != IndexOfMaximumDouble)
                {
                    var msg_to_sum = max_marginal / Buffer.MessagesToMax[c];

                    var msg_to_positiveop = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: list[c]);
                    var msgFromPositiveOp = IsPositiveOp.XAverageConditional(true, msg_to_positiveop);
                    Buffer.MessagesToMax[c] = DoublePlusOp.SumAverageConditional(list[c], msgFromPositiveOp);
                    Buffer.to_list[c]       = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: msgFromPositiveOp);
                    max_marginal            = msg_to_sum * Buffer.MessagesToMax[c];
                    product.SetToProduct(product, Buffer.MessagesToMax[c]);
                }
            }
            //Buffer.to_list[IndexOfMaximumDouble] = max_marginal / list[IndexOfMaximumDouble];
            Buffer.to_list[IndexOfMaximumDouble] = product;
            return(Buffer);
        }
示例#3
0
        /// <summary>Evidence message for EP.</summary>
        /// <param name="Buffer">Buffer <c>Buffer</c>.</param>
        /// <param name="list">Incoming message from <c>list</c>.</param>
        /// <param name="IndexOfMaximumDouble">Constant value for <c>indexOfMaximumDouble</c>.</param>
        /// <returns>Logarithm of the factor's average value across the given argument distributions.</returns>
        /// <remarks>
        ///   <para>The formula for the result is <c>log(sum_(list) p(list) factor(indexOfMaximumDouble,list))</c>.</para>
        /// </remarks>
        /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
        public static double LogAverageFactor <GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
            where GaussianList : IList <Gaussian>
        {
            double evidence     = 0;
            var    max_marginal = list[IndexOfMaximumDouble] * Buffer.to_list[IndexOfMaximumDouble];

            for (int c = 0; c < list.Count; c++)
            {
                if (c != IndexOfMaximumDouble)
                {
                    var msg_to_sum        = max_marginal / Buffer.MessagesToMax[c];
                    var msg_to_positiveop = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: list[c]);
                    evidence += IsPositiveOp.LogEvidenceRatio(true, msg_to_positiveop);
                    // sum operator does not contribute because no projection is involved
                    // the x[index]-x[c] variable does not contribute because it only connects to two factors
                    evidence -= msg_to_sum.GetLogAverageOf(Buffer.MessagesToMax[c]);
                    if (max_marginal.IsPointMass)
                    {
                        evidence += Buffer.MessagesToMax[c].GetLogAverageOf(max_marginal);
                    }
                    else
                    {
                        evidence -= Buffer.MessagesToMax[c].GetLogNormalizer();
                    }
                }
            }
            //evidence += ReplicateOp.LogEvidenceRatio<Gaussian>(MessagesToMax, list[IndexOfMaximumDouble], MessagesToMax.Select(o => max_marginal / o).ToArray());
            if (!max_marginal.IsPointMass)
            {
                evidence += max_marginal.GetLogNormalizer() - list[IndexOfMaximumDouble].GetLogNormalizer();
            }
            //evidence -= Buffer.MessagesToMax.Sum(o => o.GetLogNormalizer());
            //evidence -= Buffer.MessagesToMax.Sum(o => (max_marginal / o).GetLogAverageOf(o));
            return(evidence);
        }
        public static double LogAverageFactor <GaussianList>([SkipIfUniform] GaussianList list, GaussianList to_list, IndexOfMaximumBuffer[] Buffers, Discrete IndexOfMaximumDouble)
            where GaussianList : DistributionStructArray <Gaussian, double>
        {
            var evidences  = new double[list.Count];
            var tempBuffer = new IndexOfMaximumBuffer();

            for (int i = 0; i < list.Count; i++)
            {
                tempBuffer.to_list       = new DistributionStructArray <Gaussian, double>(list.Select(o => Gaussian.Uniform()).ToArray());
                tempBuffer.to_list[i]    = Buffers[i].MessagesToMax.Aggregate((p, q) => p * q);
                tempBuffer.MessagesToMax = new DistributionStructArray <Gaussian, double>(Buffers[i].MessagesToMax.Select(o => (Gaussian)o.Clone()).ToArray());
                evidences[i]             = IndexOfMaximumOp.LogAverageFactor(tempBuffer, list, i) + IndexOfMaximumDouble.GetLogProb(i);;
            }
            return(MMath.LogSumExp(evidences));
        }
        // redundant parameters required for correct dependency graph
        public static IndexOfMaximumBuffer Buffer <GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
            where GaussianList : IList <Gaussian>
        {
            var max_marginal = Buffer.to_list[IndexOfMaximumDouble] * list[IndexOfMaximumDouble];

            //var order = Rand.Perm(list.Count);
            for (int i = 0; i < list.Count; i++)
            {
                //int c = order[i];
                int c = i;
                if (c != IndexOfMaximumDouble)
                {
                    var msg_to_sum = max_marginal / Buffer.MessagesToMax[c];

                    var msg_to_positiveop = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: list[c]);
                    var msgFromPositiveOp = IsPositiveOp.XAverageConditional(true, msg_to_positiveop);
                    Buffer.MessagesToMax[c] = DoublePlusOp.SumAverageConditional(list[c], msgFromPositiveOp);
                    Buffer.to_list[c]       = DoublePlusOp.AAverageConditional(Sum: msg_to_sum, b: msgFromPositiveOp);
                    max_marginal            = msg_to_sum * Buffer.MessagesToMax[c];
                }
            }
            Buffer.to_list[IndexOfMaximumDouble] = max_marginal / list[IndexOfMaximumDouble];
            return(Buffer);
        }
示例#6
0
 /// <summary>Evidence message for EP.</summary>
 /// <param name="Buffer">Buffer <c>Buffer</c>.</param>
 /// <param name="list">Incoming message from <c>list</c>.</param>
 /// <param name="IndexOfMaximumDouble">Constant value for <c>indexOfMaximumDouble</c>.</param>
 /// <returns>Logarithm of the factor's contribution the EP model evidence.</returns>
 /// <remarks>
 ///   <para>The formula for the result is <c>log(sum_(list) p(list) factor(indexOfMaximumDouble,list))</c>. Adding up these values across all factors and variables gives the log-evidence estimate for EP.</para>
 /// </remarks>
 /// <typeparam name="GaussianList">The type of an incoming message from <c>list</c>.</typeparam>
 public static double LogEvidenceRatio <GaussianList>(IndexOfMaximumBuffer Buffer, GaussianList list, int IndexOfMaximumDouble)
     where GaussianList : IList <Gaussian>
 {
     return(LogAverageFactor(Buffer, list, IndexOfMaximumDouble));
 }