/// <summary>
 /// Gets the integral of the product of two Gaussians.
 /// </summary>
 /// <param name="that"></param>
 /// <remarks>
 /// <c>this = N(x;m1,v1)</c>.
 /// <c>that = N(x;m2,v2)</c>.
 /// <c>int_(-infinity)^(infinity) N(x;m1,v1) N(x;m2,v2) dx = N(m1; m2, v1+v2)</c>.
 /// When improper, the density is redefined to be <c>exp(-0.5*x^2*(1/v) + x*(m/v))</c>,
 /// i.e. we drop the terms <c>exp(-m^2/(2v))/sqrt(2*pi*v)</c>.
 /// </remarks>
 /// <returns>log(N(m1;m2,v1+v2)).</returns>
 public double GetLogAverageOf(Gaussian that)
 {
     if (IsPointMass)
     {
         return(that.GetLogProb(Point));
     }
     else if (that.IsPointMass)
     {
         return(GetLogProb(that.Point));
     }
     else
     {
         // neither this nor that is a point mass.
         // int_x N(x;m1,v1) N(x;m2,v2) dx = N(m1;m2,v1+v2)
         // (m1-m2)^2/(v1+v2) = (m1-m2)^2/(v1*v2*product.Prec)
         // (m1-m2)^2/(v1*v2) = (m1/(v1*v2) - m2/(v1*v2))^2 *v1*v2
         Gaussian product = this * that;
         //if (!product.IsProper()) throw new ArgumentException("The product is improper.");
         return(product.GetLogNormalizer() - this.GetLogNormalizer() - that.GetLogNormalizer());
     }
 }
 /// <summary>
 /// Get the integral of this distribution times another distribution raised to a power.
 /// </summary>
 /// <param name="that"></param>
 /// <param name="power"></param>
 /// <returns></returns>
 public double GetLogAverageOfPower(Gaussian that, double power)
 {
     if (IsPointMass)
     {
         return(power * that.GetLogProb(Point));
     }
     else if (that.IsPointMass)
     {
         if (power < 0)
         {
             throw new DivideByZeroException("The exponent is negative and the distribution is a point mass");
         }
         return(this.GetLogProb(that.Point));
     }
     else
     {
         var product = this * (that ^ power);
         return(product.GetLogNormalizer() - this.GetLogNormalizer() - power * that.GetLogNormalizer());
     }
 }