private bool Solve_Brtrue(CflowStack stack) { var val1 = stack.Pop(); if (val1 is BitVecExpr) { FinalExpr = ctx.MkEq(val1 as BitVecExpr, ctx.MkBV(0, 32)); if ((val1 as BitVecExpr).Simplify().IsNumeral) { Microsoft.Z3.Solver s = ctx.MkSolver(); s.Assert(FinalExpr); if (s.Check() == Status.UNSATISFIABLE) { this.PopPushedArgs(1); block.ReplaceBccWithBranch(true); return(true); } else { this.PopPushedArgs(1); block.ReplaceBccWithBranch(false); return(true); } } } return(false); }
/// <summary> /// Try to find a configuration with low weight. /// </summary> /// <param name="sortedRanking">A list of binary options and their weight ordered by their weight.</param> /// <param name="cache">A sat solver cache instance that already contains the constraints of /// size and disallowed features.</param> /// <param name="vm">The variability model of the given system.</param> /// <returns>A configuration that has a small weight.</returns> public static List <BinaryOption> getSmallWeightConfig(List <KeyValuePair <List <BinaryOption>, int> > sortedRanking, Z3Cache cache, VariabilityModel vm) { KeyValuePair <List <BinaryOption>, int>[] ranking = sortedRanking.ToArray(); Microsoft.Z3.Solver solver = cache.GetSolver(); Context z3Context = cache.GetContext(); for (int i = 0; i < ranking.Length; i++) { List <BinaryOption> candidates = ranking[i].Key; solver.Push(); solver.Assert(forceFeatures(candidates, z3Context, cache.GetOptionToTermMapping())); if (solver.Check() == Status.SATISFIABLE) { Model model = solver.Model; solver.Pop(); return(Z3VariantGenerator.RetrieveConfiguration(cache.GetVariables(), model, cache.GetTermToOptionMapping())); } solver.Pop(); } return(null); }
private bool CheckBranch(Microsoft.Z3.Solver s1, Microsoft.Z3.Solver s2) { if (s1.Check() == Status.UNSATISFIABLE) { // opaque predicate not taken this.PopPushedArgs(2); block.ReplaceBccWithBranch(false); return(true); } else if (s2.Check() == Status.UNSATISFIABLE) { // opaque predicate taken this.PopPushedArgs(2); block.ReplaceBccWithBranch(true); return(true); } else { return(false); } }
public bool SolveBranchAssisted(Context ctx, BoolExpr expr) { Instruction instr = block.LastInstr.Instruction; if (instr.OpCode.Code == Code.Brfalse || instr.OpCode.Code == Code.Brfalse_S) { Microsoft.Z3.Solver s = ctx.MkSolver(); s.Assert(expr); if (s.Check() == Status.SATISFIABLE) { this.PopPushedArgs(1); block.ReplaceBccWithBranch(true); return(true); } else { this.PopPushedArgs(1); block.ReplaceBccWithBranch(false); return(true); } } else if (instr.OpCode.Code == Code.Brtrue || instr.OpCode.Code == Code.Brtrue_S) { Microsoft.Z3.Solver s = ctx.MkSolver(); s.Assert(expr); if (s.Check() == Status.UNSATISFIABLE) { this.PopPushedArgs(1); block.ReplaceBccWithBranch(true); return(true); } else { this.PopPushedArgs(1); block.ReplaceBccWithBranch(false); return(true); } } else { Microsoft.Z3.Solver s1 = ctx.MkSolver(); Microsoft.Z3.Solver s2 = ctx.MkSolver(); s1.Add(expr); s2.Add(ctx.MkNot(expr)); return(this.CheckBranch(s1, s2)); } }
/// <summary> /// Generates all valid combinations of all configuration options in the given model. /// </summary> /// <param name="vm">the variability model containing the binary options and their constraints</param> /// <param name="optionsToConsider">the options that should be considered. All other options are ignored</param> /// <returns>Returns a list of <see cref="Configuration"/></returns> public List <Configuration> GenerateAllVariants(VariabilityModel vm, List <ConfigurationOption> optionsToConsider) { List <Configuration> allConfigurations = new List <Configuration>(); List <BoolExpr> variables; Dictionary <BoolExpr, BinaryOption> termToOption; Dictionary <BinaryOption, BoolExpr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedBooleanSolverSystem(out variables, out optionToTerm, out termToOption, vm, this.henard); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; Microsoft.Z3.Solver solver = z3Context.MkSolver(); // TODO: The following line works for z3Solver version >= 4.6.0 //solver.Set (RANDOM_SEED, z3RandomSeed); Params solverParameter = z3Context.MkParams(); solverParameter.Add(RANDOM_SEED, z3RandomSeed); solver.Parameters = solverParameter; solver.Assert(z3Constraints); while (solver.Check() == Status.SATISFIABLE) { Model model = solver.Model; List <BinaryOption> binOpts = RetrieveConfiguration(variables, model, termToOption, optionsToConsider); Configuration c = new Configuration(binOpts); // Check if the non-boolean constraints are satisfied if (vm.configurationIsValid(c) && !VariantGenerator.IsInConfigurationFile(c, allConfigurations) && VariantGenerator.FulfillsMixedConstraints(c, vm)) { allConfigurations.Add(c); } solver.Push(); solver.Assert(Z3Solver.NegateExpr(z3Context, Z3Solver.ConvertConfiguration(z3Context, binOpts, optionToTerm, vm))); } solver.Push(); solver.Pop(Convert.ToUInt32(allConfigurations.Count() + 1)); return(allConfigurations); }
public bool checkConfigurationSAT(List <BinaryOption> config, VariabilityModel vm, bool partialConfiguration) { List <BoolExpr> variables; Dictionary <BoolExpr, BinaryOption> termToOption; Dictionary <BinaryOption, BoolExpr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedBooleanSolverSystem(out variables, out optionToTerm, out termToOption, vm, false); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; List <BoolExpr> constraints = new List <BoolExpr>(); Microsoft.Z3.Solver solver = z3Context.MkSolver(); solver.Assert(z3Constraints); solver.Assert(Z3Solver.ConvertConfiguration(z3Context, config, optionToTerm, vm, partialConfiguration)); if (solver.Check() == Status.SATISFIABLE) { return(true); } return(false); }
/// <summary> /// Generates all valid combinations of all configuration options in the given model. /// </summary> /// <param name="vm">the variability model containing the binary options and their constraints</param> /// <param name="optionsToConsider">the options that should be considered. All other options are ignored</param> /// <returns>Returns a list of <see cref="Configuration"/></returns> public List <Configuration> GenerateAllVariants(VariabilityModel vm, List <ConfigurationOption> optionsToConsider) { List <Configuration> allConfigurations = new List <Configuration>(); List <Expr> variables; Dictionary <Expr, ConfigurationOption> termToOption; Dictionary <ConfigurationOption, Expr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedSolverSystem(out variables, out optionToTerm, out termToOption, vm); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; Microsoft.Z3.Solver solver = z3Context.MkSolver(); solver.Set(RANDOM_SEED, z3RandomSeed); solver.Assert(z3Constraints); while (solver.Check() == Status.SATISFIABLE) { Model model = solver.Model; Tuple <List <BinaryOption>, Dictionary <NumericOption, double> > confOpts = RetrieveConfiguration(variables, model, termToOption, optionsToConsider); Configuration c = new Configuration(confOpts.Item1, confOpts.Item2); // Check if the non-boolean constraints are satisfied bool configIsValid = vm.configurationIsValid(c); bool isInConfigurationFile = !VariantGenerator.IsInConfigurationFile(c, allConfigurations); bool fulfillsMixedConstraintrs = VariantGenerator.FulfillsMixedConstraints(c, vm); if (configIsValid && isInConfigurationFile && fulfillsMixedConstraintrs) { allConfigurations.Add(c); } solver.Push(); solver.Assert(Z3Solver.NegateExpr(z3Context, Z3Solver.ConvertConfiguration(z3Context, confOpts.Item1, optionToTerm, vm, numericValues: confOpts.Item2))); } solver.Push(); solver.Pop(Convert.ToUInt32(allConfigurations.Count() + 1)); return(allConfigurations); }
public bool checkConfigurationSAT(Configuration c, VariabilityModel vm, bool partialConfiguration = false) { List <Expr> variables; Dictionary <Expr, ConfigurationOption> termToOption; Dictionary <ConfigurationOption, Expr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedSolverSystem(out variables, out optionToTerm, out termToOption, vm); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; List <Expr> constraints = new List <Expr>(); Microsoft.Z3.Solver solver = z3Context.MkSolver(); solver.Assert(z3Constraints); solver.Assert(Z3Solver.ConvertConfiguration(z3Context, c.getBinaryOptions(BinaryOption.BinaryValue.Selected), optionToTerm, vm, partialConfiguration, c.NumericOptions)); if (solver.Check() == Status.SATISFIABLE) { return(true); } return(false); }
/// <summary> /// Demonstrate how to use <code>Push</code>and <code>Pop</code>to /// control the size of models. /// </summary> /// <remarks>Note: this test is specialized to 32-bit bitvectors.</remarks> public static void CheckSmall(Context ctx, Solver solver, BitVecExpr[] to_minimize) { Sort bv32 = ctx.MkBitVecSort(32); int num_Exprs = to_minimize.Length; UInt32[] upper = new UInt32[num_Exprs]; UInt32[] lower = new UInt32[num_Exprs]; BitVecExpr[] values = new BitVecExpr[num_Exprs]; for (int i = 0; i < upper.Length; ++i) { upper[i] = UInt32.MaxValue; lower[i] = 0; } bool some_work = true; int last_index = -1; UInt32 last_upper = 0; while (some_work) { solver.Push(); bool check_is_sat = true; while (check_is_sat && some_work) { // Assert all feasible bounds. for (int i = 0; i < num_Exprs; ++i) { solver.Assert(ctx.MkBVULE(to_minimize[i], ctx.MkBV(upper[i], 32))); } check_is_sat = Status.SATISFIABLE == solver.Check(); if (!check_is_sat) { if (last_index != -1) { lower[last_index] = last_upper + 1; } break; } Console.WriteLine("{0}", solver.Model); // narrow the bounds based on the current model. for (int i = 0; i < num_Exprs; ++i) { Expr v = solver.Model.Evaluate(to_minimize[i]); UInt64 ui = ((BitVecNum)v).UInt64; if (ui < upper[i]) { upper[i] = (UInt32)ui; } Console.WriteLine("{0} {1} {2}", i, lower[i], upper[i]); } // find a new bound to add some_work = false; last_index = 0; for (int i = 0; i < num_Exprs; ++i) { if (lower[i] < upper[i]) { last_upper = (upper[i] + lower[i]) / 2; last_index = i; solver.Assert(ctx.MkBVULE(to_minimize[i], ctx.MkBV(last_upper, 32))); some_work = true; break; } } } solver.Pop(); } }
/// <summary> /// This method searches for a corresponding methods in the dynamically loaded assemblies and calls it if found. It prefers due to performance reasons the Microsoft Solver Foundation implementation. /// </summary> /// <param name="config">The (partial) configuration which needs to be expaned to be valid.</param> /// <param name="vm">Variability model containing all options and their constraints.</param> /// <param name="minimize">If true, we search for the smallest (in terms of selected options) valid configuration. If false, we search for the largest one.</param> /// <param name="unWantedOptions">Binary options that we do not want to become part of the configuration. Might be part if there is no other valid configuration without them.</param> /// <returns>The valid configuration (or null if there is none) that satisfies the VM and the goal.</returns> public List <BinaryOption> MinimizeConfig(List <BinaryOption> config, VariabilityModel vm, bool minimize, List <BinaryOption> unWantedOptions) { List <BoolExpr> variables; Dictionary <BoolExpr, BinaryOption> termToOption; Dictionary <BinaryOption, BoolExpr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedBooleanSolverSystem(out variables, out optionToTerm, out termToOption, vm, this.henard); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; List <BoolExpr> constraints = new List <BoolExpr>(); constraints.Add(z3Constraints); //Feature Selection foreach (BinaryOption binOpt in config) { BoolExpr term = optionToTerm[binOpt]; constraints.Add(term); } Model model = null; if (minimize == true) { //Defining Goals ArithExpr[] optimizationGoals = new ArithExpr[variables.Count]; for (int r = 0; r < variables.Count; r++) { BinaryOption currOption = termToOption[variables[r]]; ArithExpr numericVariable = z3Context.MkIntConst(currOption.Name); int weight = 1; if (unWantedOptions != null && (unWantedOptions.Contains(termToOption[variables[r]]) && !config.Contains(termToOption[variables[r]]))) { weight = 1000; } constraints.Add(z3Context.MkEq(numericVariable, z3Context.MkITE(variables[r], z3Context.MkInt(weight), z3Context.MkInt(0)))); optimizationGoals[r] = numericVariable; } // For minimization, we need the class 'Optimize' Optimize optimizer = z3Context.MkOptimize(); optimizer.Assert(constraints.ToArray()); optimizer.MkMinimize(z3Context.MkAdd(optimizationGoals)); if (optimizer.Check() != Status.SATISFIABLE) { return(new List <BinaryOption>()); } else { model = optimizer.Model; } } else { // Return the first configuration returned by the solver Microsoft.Z3.Solver solver = z3Context.MkSolver(); // TODO: The following line works for z3Solver version >= 4.6.0 //solver.Set (RANDOM_SEED, z3RandomSeed); Params solverParameter = z3Context.MkParams(); solverParameter.Add(RANDOM_SEED, z3RandomSeed); solver.Parameters = solverParameter; solver.Assert(constraints.ToArray()); if (solver.Check() != Status.SATISFIABLE) { return(new List <BinaryOption>()); } else { model = solver.Model; } } List <BinaryOption> result = RetrieveConfiguration(variables, model, termToOption); return(result); }
/// <summary> /// Generates up to n solutions of the given variability model. /// Note that this method could also generate less than n solutions if the variability model does not contain sufficient solutions. /// Moreover, in the case that <code>n < 0</code>, all solutions are generated. /// </summary> /// <param name="vm">The <see cref="VariabilityModel"/> to obtain solutions for.</param> /// <param name="n">The number of solutions to obtain.</param> /// <returns>A list of configurations, in which a configuration is a list of SELECTED binary options.</returns> public List <List <BinaryOption> > GenerateUpToNFast(VariabilityModel vm, int n) { // Use the random seed to produce new random seeds Random random = new Random(Convert.ToInt32(z3RandomSeed)); List <BoolExpr> variables; Dictionary <BoolExpr, BinaryOption> termToOption; Dictionary <BinaryOption, BoolExpr> optionToTerm; Tuple <Context, BoolExpr> z3Tuple = Z3Solver.GetInitializedBooleanSolverSystem(out variables, out optionToTerm, out termToOption, vm, this.henard, random.Next()); Context z3Context = z3Tuple.Item1; BoolExpr z3Constraints = z3Tuple.Item2; List <BoolExpr> excludedConfigurations = new List <BoolExpr>(); List <BoolExpr> constraints = Z3Solver.lastConstraints; List <List <BinaryOption> > configurations = new List <List <BinaryOption> >(); Microsoft.Z3.Solver s = z3Context.MkSolver(); // TODO: The following line works for z3Solver version >= 4.6.0 //solver.Set (RANDOM_SEED, z3RandomSeed); Params solverParameter = z3Context.MkParams(); if (henard) { solverParameter.Add(RANDOM_SEED, NextUInt(random)); } else { solverParameter.Add(RANDOM_SEED, z3RandomSeed); } s.Parameters = solverParameter; s.Assert(z3Constraints); s.Push(); Model model = null; while (s.Check() == Status.SATISFIABLE && (configurations.Count < n || n < 0)) { model = s.Model; List <BinaryOption> config = RetrieveConfiguration(variables, model, termToOption); configurations.Add(config); if (henard) { BoolExpr newConstraint = Z3Solver.NegateExpr(z3Context, Z3Solver.ConvertConfiguration(z3Context, config, optionToTerm, vm)); excludedConfigurations.Add(newConstraint); Dictionary <BoolExpr, BinaryOption> oldTermToOption = termToOption; // Now, initialize a new one for the next configuration z3Tuple = Z3Solver.GetInitializedBooleanSolverSystem(out variables, out optionToTerm, out termToOption, vm, this.henard, random.Next()); z3Context = z3Tuple.Item1; z3Constraints = z3Tuple.Item2; s = z3Context.MkSolver(); //s.Set (RANDOM_SEED, NextUInt (random)); solverParameter = z3Context.MkParams(); solverParameter.Add(RANDOM_SEED, NextUInt(random)); s.Parameters = solverParameter; constraints = Z3Solver.lastConstraints; excludedConfigurations = Z3Solver.ConvertConstraintsToNewContext(oldTermToOption, optionToTerm, excludedConfigurations, z3Context); constraints.AddRange(excludedConfigurations); s.Assert(z3Context.MkAnd(Z3Solver.Shuffle(constraints, new Random(random.Next())))); s.Push(); } else { s.Add(Z3Solver.NegateExpr(z3Context, Z3Solver.ConvertConfiguration(z3Context, config, optionToTerm, vm))); } } return(configurations); }
/*! \brief Extract unsatisfiable core example */ public void unsat_core_and_proof_example() { if (this.z3 != null) { this.z3.Dispose(); } Dictionary<string, string> cfg = new Dictionary<string, string>() { { "PROOF_MODE", "2" } }; this.z3 = new Context(cfg); this.solver = z3.MkSolver(); BoolExpr pa = mk_bool_var("PredA"); BoolExpr pb = mk_bool_var("PredB"); BoolExpr pc = mk_bool_var("PredC"); BoolExpr pd = mk_bool_var("PredD"); BoolExpr p1 = mk_bool_var("P1"); BoolExpr p2 = mk_bool_var("P2"); BoolExpr p3 = mk_bool_var("P3"); BoolExpr p4 = mk_bool_var("P4"); BoolExpr[] assumptions = new BoolExpr[] { z3.MkNot(p1), z3.MkNot(p2), z3.MkNot(p3), z3.MkNot(p4) }; BoolExpr f1 = z3.MkAnd(new BoolExpr[] { pa, pb, pc }); BoolExpr f2 = z3.MkAnd(new BoolExpr[] { pa, z3.MkNot(pb), pc }); BoolExpr f3 = z3.MkOr(z3.MkNot(pa), z3.MkNot(pc)); BoolExpr f4 = pd; solver.Assert(z3.MkOr(f1, p1)); solver.Assert(z3.MkOr(f2, p2)); solver.Assert(z3.MkOr(f3, p3)); solver.Assert(z3.MkOr(f4, p4)); Status result = solver.Check(assumptions); if (result == Status.UNSATISFIABLE) { Console.WriteLine("unsat"); Console.WriteLine("proof: {0}", solver.Proof); foreach (Expr c in solver.UnsatCore) { Console.WriteLine("{0}", c); } } }
private bool IsValid() { Microsoft.Z3.Status status = _solver.Check(); return(status == Status.SATISFIABLE); }