internal SingleFeaturePredictionTransformerBase(IHost host, ModelLoadContext ctx)
            : base(host, ctx)
        {
            FeatureColumn = ctx.LoadStringOrNull();

            if (FeatureColumn == null)
            {
                FeatureColumnType = null;
            }
            else if (!TrainSchema.TryGetColumnIndex(FeatureColumn, out int col))
            {
                throw Host.ExceptSchemaMismatch(nameof(FeatureColumn), RoleMappedSchema.ColumnRole.Feature.Value, FeatureColumn);
            }
            else
            {
                FeatureColumnType = TrainSchema.GetColumnType(col);
            }

            BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, Model);
        }
示例#2
0
        internal PredictionTransformerBase(IHost host, ModelLoadContext ctx)
        {
            Host = host;

            ctx.LoadModel <TModel, SignatureLoadModel>(host, out TModel model, DirModel);
            Model = model;

            // *** Binary format ***
            // model: prediction model.
            // stream: empty data view that contains train schema.
            // id of string: feature column.

            // Clone the stream with the schema into memory.
            var ms = new MemoryStream();

            ctx.TryLoadBinaryStream(DirTransSchema, reader =>
            {
                reader.BaseStream.CopyTo(ms);
            });

            ms.Position = 0;
            var loader = new BinaryLoader(host, new BinaryLoader.Arguments(), ms);

            TrainSchema = loader.Schema;

            FeatureColumn = ctx.LoadStringOrNull();
            if (FeatureColumn == null)
            {
                FeatureColumnType = null;
            }
            else if (!TrainSchema.TryGetColumnIndex(FeatureColumn, out int col))
            {
                throw Host.ExceptSchemaMismatch(nameof(FeatureColumn), RoleMappedSchema.ColumnRole.Feature.Value, FeatureColumn);
            }
            else
            {
                FeatureColumnType = TrainSchema.GetColumnType(col);
            }

            BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, model);
        }
示例#3
0
        /// <summary>
        /// Initializes a new reference of <see cref="SingleFeaturePredictionTransformerBase{TModel, TScorer}"/>.
        /// </summary>
        /// <param name="host">The local instance of <see cref="IHost"/>.</param>
        /// <param name="model">The model used for scoring.</param>
        /// <param name="trainSchema">The schema of the training data.</param>
        /// <param name="featureColumn">The feature column name.</param>
        public SingleFeaturePredictionTransformerBase(IHost host, TModel model, Schema trainSchema, string featureColumn)
            : base(host, model, trainSchema)
        {
            FeatureColumn = featureColumn;

            FeatureColumn = featureColumn;
            if (featureColumn == null)
            {
                FeatureColumnType = null;
            }
            else if (!trainSchema.TryGetColumnIndex(featureColumn, out int col))
            {
                throw Host.ExceptSchemaMismatch(nameof(featureColumn), RoleMappedSchema.ColumnRole.Feature.Value, featureColumn);
            }
            else
            {
                FeatureColumnType = trainSchema[col].Type;
            }

            BindableMapper = ScoreUtils.GetSchemaBindableMapper(Host, model);
        }
            public BindableMapper(IHostEnvironment env, ModelLoadContext ctx)
            {
                Contracts.CheckValue(env, nameof(env));
                _env = env;
                _env.CheckValue(ctx, nameof(ctx));
                ctx.CheckAtModel(GetVersionInfo());

                // *** Binary format ***
                // int: topContributionsCount
                // int: bottomContributionsCount
                // bool: normalize
                // bool: stringify
                ctx.LoadModel <IFeatureContributionMapper, SignatureLoadModel>(env, out Predictor, ModelFileUtils.DirPredictor);
                GenericMapper          = ScoreUtils.GetSchemaBindableMapper(_env, Predictor, null);
                _topContributionsCount = ctx.Reader.ReadInt32();
                Contracts.CheckDecode(0 < _topContributionsCount && _topContributionsCount <= MaxTopBottom);
                _bottomContributionsCount = ctx.Reader.ReadInt32();
                Contracts.CheckDecode(0 < _bottomContributionsCount && _bottomContributionsCount <= MaxTopBottom);
                _normalize = ctx.Reader.ReadBoolByte();
                Stringify  = ctx.Reader.ReadBoolByte();
            }
            public BindableMapper(IHostEnvironment env, IFeatureContributionMapper predictor, int topContributionsCount, int bottomContributionsCount, bool normalize, bool stringify)
            {
                Contracts.CheckValue(env, nameof(env));
                _env = env;
                _env.CheckValue(predictor, nameof(predictor));
                if (topContributionsCount <= 0 || topContributionsCount > MaxTopBottom)
                {
                    throw env.Except($"Number of top contribution must be in range (0,{MaxTopBottom}]");
                }
                if (bottomContributionsCount <= 0 || bottomContributionsCount > MaxTopBottom)
                {
                    throw env.Except($"Number of bottom contribution must be in range (0,{MaxTopBottom}]");
                }

                _topContributionsCount    = topContributionsCount;
                _bottomContributionsCount = bottomContributionsCount;
                _normalize = normalize;
                Stringify  = stringify;
                Predictor  = predictor;

                GenericMapper = ScoreUtils.GetSchemaBindableMapper(_env, Predictor, null);
            }
示例#6
0
        private static IDataTransform Create(IHostEnvironment env, Arguments args, ITrainer trainer, IDataView input, IComponentFactory <IPredictor, ISchemaBindableMapper> mapperFactory)
        {
            Contracts.AssertValue(env, nameof(env));
            env.AssertValue(args, nameof(args));
            env.AssertValue(trainer, nameof(trainer));
            env.AssertValue(input, nameof(input));

            var host = env.Register("TrainAndScoreTransform");

            using (var ch = host.Start("Train"))
            {
                ch.Trace("Constructing trainer");
                var    customCols = TrainUtils.CheckAndGenerateCustomColumns(env, args.CustomColumn);
                string feat;
                string group;
                var    data      = CreateDataFromArgs(ch, input, args, out feat, out group);
                var    predictor = TrainUtils.Train(host, ch, data, trainer, null,
                                                    args.Calibrator, args.MaxCalibrationExamples, null);

                return(ScoreUtils.GetScorer(args.Scorer, predictor, input, feat, group, customCols, env, data.Schema, mapperFactory));
            }
        }
        public static IDataScorerTransform Create(IHostEnvironment env, Arguments args, IDataView data, ISchemaBoundMapper mapper, RoleMappedSchema trainSchema)
        {
            Contracts.CheckValue(env, nameof(env));
            env.CheckValue(data, nameof(data));
            env.CheckValue(mapper, nameof(mapper));
            if (args.Top <= 0 || args.Top > MaxTopBottom)
            {
                throw env.Except($"Number of top contribution must be in range (0,{MaxTopBottom}]");
            }
            if (args.Bottom <= 0 || args.Bottom > MaxTopBottom)
            {
                throw env.Except($"Number of bottom contribution must be in range (0,{MaxTopBottom}]");
            }

            var contributionMapper = mapper as RowMapper;

            env.CheckParam(mapper != null, nameof(mapper), "Unexpected mapper");

            var scorer     = ScoreUtils.GetScorerComponent(env, contributionMapper);
            var scoredPipe = scorer.CreateComponent(env, data, contributionMapper, trainSchema);

            return(scoredPipe);
        }
示例#8
0
        public static IDataTransform Create(IHostEnvironment env, Arguments args, IDataView input)
        {
            Contracts.CheckValue(env, nameof(env));
            env.CheckUserArg(!string.IsNullOrWhiteSpace(args.InputModelFile), nameof(args.InputModelFile), "The input model file is required.");

            IPredictor       predictor;
            RoleMappedSchema trainSchema = null;

            using (var file = env.OpenInputFile(args.InputModelFile))
                using (var strm = file.OpenReadStream())
                    using (var rep = RepositoryReader.Open(strm, env))
                    {
                        ModelLoadContext.LoadModel <IPredictor, SignatureLoadModel>(env, out predictor, rep, ModelFileUtils.DirPredictor);
                        trainSchema = ModelFileUtils.LoadRoleMappedSchemaOrNull(env, rep);
                    }

            string feat = TrainUtils.MatchNameOrDefaultOrNull(env, input.Schema,
                                                              nameof(args.FeatureColumn), args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(env, input.Schema,
                                                               nameof(args.GroupColumn), args.GroupColumn, DefaultColumnNames.GroupId);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(env, args.CustomColumn);

            return(ScoreUtils.GetScorer(args.Scorer, predictor, input, feat, group, customCols, env, trainSchema));
        }
示例#9
0
        private void RunCore(IChannel ch)
        {
            Host.AssertValue(ch);

            ch.Trace("Creating loader");

            LoadModelObjects(ch, true, out var predictor, true, out var trainSchema, out var loader);
            ch.AssertValue(predictor);
            ch.AssertValueOrNull(trainSchema);
            ch.AssertValue(loader);

            ch.Trace("Creating pipeline");
            var scorer = Args.Scorer;

            ch.Assert(scorer == null || scorer is ICommandLineComponentFactory, "ScoreCommand should only be used from the command line.");
            var bindable = ScoreUtils.GetSchemaBindableMapper(Host, predictor, scorerFactorySettings: scorer as ICommandLineComponentFactory);

            ch.AssertValue(bindable);

            // REVIEW: We probably ought to prefer role mappings from the training schema.
            string feat = TrainUtils.MatchNameOrDefaultOrNull(ch, loader.Schema,
                                                              nameof(Args.FeatureColumn), Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, loader.Schema,
                                                               nameof(Args.GroupColumn), Args.GroupColumn, DefaultColumnNames.GroupId);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var schema     = new RoleMappedSchema(loader.Schema, label: null, feature: feat, group: group, custom: customCols, opt: true);
            var mapper     = bindable.Bind(Host, schema);

            if (scorer == null)
            {
                scorer = ScoreUtils.GetScorerComponent(Host, mapper);
            }

            loader = CompositeDataLoader.ApplyTransform(Host, loader, "Scorer", scorer.ToString(),
                                                        (env, view) => scorer.CreateComponent(env, view, mapper, trainSchema));

            loader = CompositeDataLoader.Create(Host, loader, Args.PostTransform);

            if (!string.IsNullOrWhiteSpace(Args.OutputModelFile))
            {
                ch.Trace("Saving the data pipe");
                SaveLoader(loader, Args.OutputModelFile);
            }

            ch.Trace("Creating saver");
            IDataSaver writer;

            if (Args.Saver == null)
            {
                var ext    = Path.GetExtension(Args.OutputDataFile);
                var isText = ext == ".txt" || ext == ".tlc";
                if (isText)
                {
                    writer = new TextSaver(Host, new TextSaver.Arguments());
                }
                else
                {
                    writer = new BinarySaver(Host, new BinarySaver.Arguments());
                }
            }
            else
            {
                writer = Args.Saver.CreateComponent(Host);
            }
            ch.Assert(writer != null);
            var outputIsBinary = writer is BinaryWriter;

            bool outputAllColumns =
                Args.OutputAllColumns == true ||
                (Args.OutputAllColumns == null && Utils.Size(Args.OutputColumn) == 0 && outputIsBinary);

            bool outputNamesAndLabels =
                Args.OutputAllColumns == true || Utils.Size(Args.OutputColumn) == 0;

            if (Args.OutputAllColumns == true && Utils.Size(Args.OutputColumn) != 0)
            {
                ch.Warning(nameof(Args.OutputAllColumns) + "=+ always writes all columns irrespective of " + nameof(Args.OutputColumn) + " specified.");
            }

            if (!outputAllColumns && Utils.Size(Args.OutputColumn) != 0)
            {
                foreach (var outCol in Args.OutputColumn)
                {
                    if (!loader.Schema.TryGetColumnIndex(outCol, out int dummyColIndex))
                    {
                        throw ch.ExceptUserArg(nameof(Arguments.OutputColumn), "Column '{0}' not found.", outCol);
                    }
                }
            }

            uint maxScoreId = 0;

            if (!outputAllColumns)
            {
                maxScoreId = loader.Schema.GetMaxMetadataKind(out int colMax, MetadataUtils.Kinds.ScoreColumnSetId);
            }
            ch.Assert(outputAllColumns || maxScoreId > 0); // score set IDs are one-based
            var cols = new List <int>();

            for (int i = 0; i < loader.Schema.Count; i++)
            {
                if (!Args.KeepHidden && loader.Schema.IsHidden(i))
                {
                    continue;
                }
                if (!(outputAllColumns || ShouldAddColumn(loader.Schema, i, maxScoreId, outputNamesAndLabels)))
                {
                    continue;
                }
                var type = loader.Schema.GetColumnType(i);
                if (writer.IsColumnSavable(type))
                {
                    cols.Add(i);
                }
                else
                {
                    ch.Warning("The column '{0}' will not be written as it has unsavable column type.",
                               loader.Schema.GetColumnName(i));
                }
            }

            ch.Check(cols.Count > 0, "No valid columns to save");

            ch.Trace("Scoring and saving data");
            using (var file = Host.CreateOutputFile(Args.OutputDataFile))
                using (var stream = file.CreateWriteStream())
                    writer.SaveData(stream, loader, cols.ToArray());
        }
            private FoldResult RunFold(int fold)
            {
                var host = GetHost();

                host.Assert(0 <= fold && fold <= _numFolds);
                // REVIEW: Make channels buffered in multi-threaded environments.
                using (var ch = host.Start($"Fold {fold}"))
                {
                    ch.Trace("Constructing trainer");
                    ITrainer trainer = _trainer.CreateInstance(host);

                    // Train pipe.
                    var trainFilter = new RangeFilter.Arguments();
                    trainFilter.Column     = _splitColumn;
                    trainFilter.Min        = (Double)fold / _numFolds;
                    trainFilter.Max        = (Double)(fold + 1) / _numFolds;
                    trainFilter.Complement = true;
                    IDataView trainPipe = new RangeFilter(host, trainFilter, _inputDataView);
                    trainPipe = new OpaqueDataView(trainPipe);
                    var trainData = _createExamples(host, ch, trainPipe, trainer);

                    // Test pipe.
                    var testFilter = new RangeFilter.Arguments();
                    testFilter.Column = trainFilter.Column;
                    testFilter.Min    = trainFilter.Min;
                    testFilter.Max    = trainFilter.Max;
                    ch.Assert(!testFilter.Complement);
                    IDataView testPipe = new RangeFilter(host, testFilter, _inputDataView);
                    testPipe = new OpaqueDataView(testPipe);
                    var testData = _applyTransformsToTestData(host, ch, testPipe, trainData, trainPipe);

                    // Validation pipe and examples.
                    RoleMappedData validData = null;
                    if (_getValidationDataView != null)
                    {
                        ch.Assert(_applyTransformsToValidationData != null);
                        if (!trainer.Info.SupportsValidation)
                        {
                            ch.Warning("Trainer does not accept validation dataset.");
                        }
                        else
                        {
                            ch.Trace("Constructing the validation pipeline");
                            IDataView validLoader = _getValidationDataView();
                            var       validPipe   = ApplyTransformUtils.ApplyAllTransformsToData(host, _inputDataView, validLoader);
                            validPipe = new OpaqueDataView(validPipe);
                            validData = _applyTransformsToValidationData(host, ch, validPipe, trainData, trainPipe);
                        }
                    }

                    // Train.
                    var predictor = TrainUtils.Train(host, ch, trainData, trainer, _trainer.Kind, validData,
                                                     _calibrator, _maxCalibrationExamples, _cacheData, _inputPredictor);

                    // Score.
                    ch.Trace("Scoring and evaluating");
                    var bindable = ScoreUtils.GetSchemaBindableMapper(host, predictor, _scorer);
                    ch.AssertValue(bindable);
                    var mapper     = bindable.Bind(host, testData.Schema);
                    var scorerComp = _scorer.IsGood() ? _scorer : ScoreUtils.GetScorerComponent(mapper);
                    IDataScorerTransform scorePipe = scorerComp.CreateInstance(host, testData.Data, mapper, trainData.Schema);

                    // Save per-fold model.
                    string modelFileName = ConstructPerFoldName(_outputModelFile, fold);
                    if (modelFileName != null && _loader != null)
                    {
                        using (var file = host.CreateOutputFile(modelFileName))
                        {
                            var rmd = new RoleMappedData(
                                CompositeDataLoader.ApplyTransform(host, _loader, null, null,
                                                                   (e, newSource) => ApplyTransformUtils.ApplyAllTransformsToData(e, trainData.Data, newSource)),
                                trainData.Schema.GetColumnRoleNames());
                            TrainUtils.SaveModel(host, ch, file, predictor, rmd, _cmd);
                        }
                    }

                    // Evaluate.
                    var evalComp = _evaluator;
                    if (!evalComp.IsGood())
                    {
                        evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
                    }
                    var eval = evalComp.CreateInstance(host);
                    // Note that this doesn't require the provided columns to exist (because of the "opt" parameter).
                    // We don't normally expect the scorer to drop columns, but if it does, we should not require
                    // all the columns in the test pipeline to still be present.
                    var dataEval = new RoleMappedData(scorePipe, testData.Schema.GetColumnRoleNames(), opt: true);

                    var            dict        = eval.Evaluate(dataEval);
                    RoleMappedData perInstance = null;
                    if (_savePerInstance)
                    {
                        var perInst = eval.GetPerInstanceMetrics(dataEval);
                        perInstance = new RoleMappedData(perInst, dataEval.Schema.GetColumnRoleNames(), opt: true);
                    }
                    ch.Done();
                    return(new FoldResult(dict, dataEval.Schema.Schema, perInstance, trainData.Schema));
                }
            }
        private void RunCore(IChannel ch, string cmd)
        {
            Host.AssertValue(ch);
            Host.AssertNonEmpty(cmd);

            ch.Trace("Constructing trainer");
            ITrainer trainer = Args.Trainer.CreateInstance(Host);

            IPredictor inputPredictor = null;

            if (Args.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, Args.InputModelFile, out inputPredictor))
            {
                ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized.");
            }

            ch.Trace("Constructing the training pipeline");
            IDataView trainPipe = CreateLoader();

            ISchema schema = trainPipe.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn),
                                                                  Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);

            TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref trainPipe, features, Args.NormalizeFeatures);

            ch.Trace("Binding columns");
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var data       = new RoleMappedData(trainPipe, label, features, group, weight, name, customCols);

            RoleMappedData validData = null;

            if (!string.IsNullOrWhiteSpace(Args.ValidationFile))
            {
                if (!TrainUtils.CanUseValidationData(trainer))
                {
                    ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset.");
                }
                else
                {
                    ch.Trace("Constructing the validation pipeline");
                    IDataView validPipe = CreateRawLoader(dataFile: Args.ValidationFile);
                    validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, validPipe);
                    validData = new RoleMappedData(validPipe, data.Schema.GetColumnRoleNames());
                }
            }

            var predictor = TrainUtils.Train(Host, ch, data, trainer, _info.LoadNames[0], validData,
                                             Args.Calibrator, Args.MaxCalibrationExamples, Args.CacheData, inputPredictor);

            IDataLoader testPipe;

            using (var file = !string.IsNullOrEmpty(Args.OutputModelFile) ?
                              Host.CreateOutputFile(Args.OutputModelFile) : Host.CreateTempFile(".zip"))
            {
                TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd);

                ch.Trace("Constructing the testing pipeline");
                using (var stream = file.OpenReadStream())
                    using (var rep = RepositoryReader.Open(stream, ch))
                        testPipe = LoadLoader(rep, Args.TestFile, true);
            }

            // Score.
            ch.Trace("Scoring and evaluating");
            IDataScorerTransform scorePipe = ScoreUtils.GetScorer(Args.Scorer, predictor, testPipe, features, group, customCols, Host, data.Schema);

            // Evaluate.
            var evalComp = Args.Evaluator;

            if (!evalComp.IsGood())
            {
                evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
            }
            var evaluator = evalComp.CreateInstance(Host);
            var dataEval  = new RoleMappedData(scorePipe, label, features,
                                               group, weight, name, customCols, opt: true);
            var metrics = evaluator.Evaluate(dataEval);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall))
            {
                throw ch.Except("No overall metrics found");
            }
            overall = evaluator.GetOverallResults(overall);
            MetricWriter.PrintOverallMetrics(Host, ch, Args.SummaryFilename, overall, 1);
            evaluator.PrintAdditionalMetrics(ch, metrics);
            Dictionary <string, IDataView>[] metricValues = { metrics };
            SendTelemetryMetric(metricValues);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(dataEval);
                var perInstData = new RoleMappedData(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }
        private void RunCore(IChannel ch, string cmd)
        {
            Host.AssertValue(ch);
            Host.AssertNonEmpty(cmd);

            ch.Trace("Constructing trainer");
            ITrainer trainer = Args.Trainer.CreateComponent(Host);

            IPredictor inputPredictor = null;

            if (Args.ContinueTrain && !TrainUtils.TryLoadPredictor(ch, Host, Args.InputModelFile, out inputPredictor))
            {
                ch.Warning("No input model file specified or model file did not contain a predictor. The model state cannot be initialized.");
            }

            ch.Trace("Constructing the training pipeline");
            IDataView trainPipe = CreateLoader();

            ISchema schema = trainPipe.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.FeatureColumn),
                                                                  Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Arguments.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);

            TrainUtils.AddNormalizerIfNeeded(Host, ch, trainer, ref trainPipe, features, Args.NormalizeFeatures);

            ch.Trace("Binding columns");
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);
            var data       = new RoleMappedData(trainPipe, label, features, group, weight, name, customCols);

            RoleMappedData validData = null;

            if (!string.IsNullOrWhiteSpace(Args.ValidationFile))
            {
                if (!trainer.Info.SupportsValidation)
                {
                    ch.Warning("Ignoring validationFile: Trainer does not accept validation dataset.");
                }
                else
                {
                    ch.Trace("Constructing the validation pipeline");
                    IDataView validPipe = CreateRawLoader(dataFile: Args.ValidationFile);
                    validPipe = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, validPipe);
                    validData = new RoleMappedData(validPipe, data.Schema.GetColumnRoleNames());
                }
            }

            // In addition to the training set, some trainers can accept two data sets, validation set and test set,
            // in training phase. The major difference between validation set and test set is that training process may
            // indirectly use validation set to improve the model but the learned model should totally independent of test set.
            // Similar to validation set, the trainer can report the scores computed using test set.
            RoleMappedData testDataUsedInTrainer = null;

            if (!string.IsNullOrWhiteSpace(Args.TestFile))
            {
                // In contrast to the if-else block for validation above, we do not throw a warning if test file is provided
                // because this is TrainTest command.
                if (trainer.Info.SupportsTest)
                {
                    ch.Trace("Constructing the test pipeline");
                    IDataView testPipeUsedInTrainer = CreateRawLoader(dataFile: Args.TestFile);
                    testPipeUsedInTrainer = ApplyTransformUtils.ApplyAllTransformsToData(Host, trainPipe, testPipeUsedInTrainer);
                    testDataUsedInTrainer = new RoleMappedData(testPipeUsedInTrainer, data.Schema.GetColumnRoleNames());
                }
            }

            var predictor = TrainUtils.Train(Host, ch, data, trainer, validData,
                                             Args.Calibrator, Args.MaxCalibrationExamples, Args.CacheData, inputPredictor, testDataUsedInTrainer);

            IDataLoader testPipe;
            bool        hasOutfile   = !string.IsNullOrEmpty(Args.OutputModelFile);
            var         tempFilePath = hasOutfile ? null : Path.GetTempFileName();

            using (var file = new SimpleFileHandle(ch, hasOutfile ? Args.OutputModelFile : tempFilePath, true, !hasOutfile))
            {
                TrainUtils.SaveModel(Host, ch, file, predictor, data, cmd);
                ch.Trace("Constructing the testing pipeline");
                using (var stream = file.OpenReadStream())
                    using (var rep = RepositoryReader.Open(stream, ch))
                        testPipe = LoadLoader(rep, Args.TestFile, true);
            }

            // Score.
            ch.Trace("Scoring and evaluating");
            ch.Assert(Args.Scorer == null || Args.Scorer is ICommandLineComponentFactory, "TrainTestCommand should only be used from the command line.");
            IDataScorerTransform scorePipe = ScoreUtils.GetScorer(Args.Scorer, predictor, testPipe, features, group, customCols, Host, data.Schema);

            // Evaluate.
            var evaluator = Args.Evaluator?.CreateComponent(Host) ??
                            EvaluateUtils.GetEvaluator(Host, scorePipe.Schema);
            var dataEval = new RoleMappedData(scorePipe, label, features,
                                              group, weight, name, customCols, opt: true);
            var metrics = evaluator.Evaluate(dataEval);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall))
            {
                throw ch.Except("No overall metrics found");
            }
            overall = evaluator.GetOverallResults(overall);
            MetricWriter.PrintOverallMetrics(Host, ch, Args.SummaryFilename, overall, 1);
            evaluator.PrintAdditionalMetrics(ch, metrics);
            Dictionary <string, IDataView>[] metricValues = { metrics };
            SendTelemetryMetric(metricValues);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(dataEval);
                var perInstData = new RoleMappedData(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }
示例#13
0
        private void RunCore(IChannel ch)
        {
            ch.Trace("Constructing data pipeline");
            IDataLoader      loader;
            IPredictor       predictor;
            RoleMappedSchema trainSchema;

            LoadModelObjects(ch, true, out predictor, true, out trainSchema, out loader);
            ch.AssertValue(predictor);
            ch.AssertValueOrNull(trainSchema);
            ch.AssertValue(loader);

            ch.Trace("Binding columns");
            ISchema schema = loader.Schema;
            string  label  = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.LabelColumn),
                                                                 Args.LabelColumn, DefaultColumnNames.Label);
            string features = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.FeatureColumn),
                                                                  Args.FeatureColumn, DefaultColumnNames.Features);
            string group = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.GroupColumn),
                                                               Args.GroupColumn, DefaultColumnNames.GroupId);
            string weight = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.WeightColumn),
                                                                Args.WeightColumn, DefaultColumnNames.Weight);
            string name = TrainUtils.MatchNameOrDefaultOrNull(ch, schema, nameof(Args.NameColumn),
                                                              Args.NameColumn, DefaultColumnNames.Name);
            var customCols = TrainUtils.CheckAndGenerateCustomColumns(ch, Args.CustomColumn);

            // Score.
            ch.Trace("Scoring and evaluating");
            ch.Assert(Args.Scorer == null || Args.Scorer is ICommandLineComponentFactory, "TestCommand should only be used from the command line.");
            IDataScorerTransform scorePipe = ScoreUtils.GetScorer(Args.Scorer, predictor, loader, features, group, customCols, Host, trainSchema);

            // Evaluate.
            var evalComp = Args.Evaluator;

            if (!evalComp.IsGood())
            {
                evalComp = EvaluateUtils.GetEvaluatorType(ch, scorePipe.Schema);
            }
            var evaluator = evalComp.CreateInstance(Host);
            var data      = new RoleMappedData(scorePipe, label, null, group, weight, name, customCols);
            var metrics   = evaluator.Evaluate(data);

            MetricWriter.PrintWarnings(ch, metrics);
            evaluator.PrintFoldResults(ch, metrics);
            if (!metrics.TryGetValue(MetricKinds.OverallMetrics, out var overall))
            {
                throw ch.Except("No overall metrics found");
            }
            overall = evaluator.GetOverallResults(overall);
            MetricWriter.PrintOverallMetrics(Host, ch, Args.SummaryFilename, overall, 1);
            evaluator.PrintAdditionalMetrics(ch, metrics);
            Dictionary <string, IDataView>[] metricValues = { metrics };
            SendTelemetryMetric(metricValues);
            if (!string.IsNullOrWhiteSpace(Args.OutputDataFile))
            {
                var perInst     = evaluator.GetPerInstanceMetrics(data);
                var perInstData = new RoleMappedData(perInst, label, null, group, weight, name, customCols);
                var idv         = evaluator.GetPerInstanceDataViewToSave(perInstData);
                MetricWriter.SavePerInstance(Host, ch, Args.OutputDataFile, idv);
            }
        }