/// <summary> /// Creates a new SparseGP which the product of two other SparseGPs /// </summary> /// <param name="a">First SparseGP</param> /// <param name="b">Second SparseGP</param> /// <returns>Result</returns> public static SparseGP operator *(SparseGP a, SparseGP b) { SparseGP result = new SparseGP(a.FixedParameters); result.SetToProduct(a, b); return(result); }
/// <summary> /// Max difference between two sparse GPs - used for /// convergence testing /// </summary> /// <param name="thatd">That sparse GP which will be compared to this sparse GP</param> /// <returns></returns> public double MaxDiff(object thatd) { SparseGP that = thatd as SparseGP; // Prior mean and kernel references should be the same // Low rank lists are ignored if (that == null || this.FixedParameters != that.FixedParameters || this.IncludePrior != that.IncludePrior || this.IsPointMass != that.IsPointMass || this.IsUniform() != that.IsUniform()) { return(double.PositiveInfinity); } if (this.IsUniform() && that.IsUniform()) { return(0.0); } if (this.IsPointMass) { // both point masses if (this.Point is Diffable) { return(((Diffable)this.Point).MaxDiff(that.Point)); } else { return((this.Point == that.Point) ? 0.0 : double.PositiveInfinity); } } return(this.InducingDist.MaxDiff(that.InducingDist)); }
/// <summary> /// Creates a new SparseGP which the ratio of two other SparseGPs /// </summary> /// <param name="numerator">numerator SparseGP</param> /// <param name="denominator">denominator SparseGP</param> /// <returns>Result</returns> public static SparseGP operator /(SparseGP numerator, SparseGP denominator) { SparseGP result = new SparseGP(numerator.FixedParameters); result.SetToRatio(numerator, denominator); return(result); }
/// <summary> /// Creates a sparse GP point mass - i.e. all the mass is at a given function /// </summary> /// <param name="sgpf"></param> /// <param name="value"></param> /// <returns></returns> public static SparseGP PointMass(SparseGPFixed sgpf, IFunction value) { SparseGP sgp = new SparseGP(sgpf, false); sgp.Point = value; return(sgp); }
/// <summary> /// Sets this instance to the product of two sparse GPs. /// </summary> /// <param name="a">Sparse GP</param> /// <param name="b">Sparse GP</param> public void SetToProduct(SparseGP a, SparseGP b) { if (a.FixedParameters != b.FixedParameters) { throw new ArgumentException("SparseGPs do not have the same FixedParameters. a.FixedParameters = " + a.FixedParameters + ", b.FixedParameters = " + b.FixedParameters); } FixedParameters = a.FixedParameters; if (a.IncludePrior && b.IncludePrior) { throw new ArgumentException("Both SparseGPs include the prior. Cannot multiply."); } IncludePrior = a.IncludePrior || b.IncludePrior; if (a.IsPointMass) { if (b.IsPointMass && !a.Point.Equals(b.Point)) { throw new AllZeroException(); } Point = a.Point; } else if (b.IsPointMass) { Point = b.Point; } else { InducingDist.SetToProduct(a.InducingDist, b.InducingDist); pointFunc = null; ClearCachedValues(); } }
/// <summary> /// Sets this SparseGP distribution to the weighted sum of two other such distributions /// </summary> /// <param name="weight1"></param> /// <param name="value1"></param> /// <param name="weight2"></param> /// <param name="value2"></param> /// <remarks>Not yet implemented</remarks> public void SetToSum(double weight1, SparseGP value1, double weight2, SparseGP value2) { if (value1.FixedParameters != value2.FixedParameters) { throw new ArgumentException("SparseGPs do not have the same FixedParameters. a.FixedParameters = " + value1.FixedParameters + ", b.FixedParameters = " + value2.FixedParameters); } FixedParameters = value1.FixedParameters; if (value1.IncludePrior != value2.IncludePrior) { throw new ArgumentException("One Sparse GP includes a prior, the other does not. Cannot add."); } IncludePrior = value1.IncludePrior; InducingDist.SetToSum(weight1, value1.InducingDist, weight2, value2.InducingDist); // The only time the result is a point mass is if both sources are the same point mass if (InducingDist.IsPointMass) { pointFunc = value1.pointFunc; } else { pointFunc = null; } ClearCachedValues(); }
/// <summary> /// k(x) /// </summary> public double K_x_x(SparseGP sgpb) { if (double.IsNaN(kxx)) { kxx = sgpb.FixedParameters.Prior.Variance(Xi); } return(kxx); }
/// <summary> /// K(B,x). This is a calculated Vector maintained /// by the class /// </summary> public Vector K_B_x(SparseGP sgpb) { if (kBx == null) { if (Xi != null) { kBx = sgpb.FixedParameters.KernelOf_X_B(Xi); } } return(kBx); }
/// <summary> /// p = Inv(K(B,B)) * K(B,x). This is a calculated Vector maintained /// by the class /// </summary> public Vector P(SparseGP sgpb) { if (pvec == null) { Vector KBx = K_B_x(sgpb); if (KBx != null) { pvec = sgpb.FixedParameters.InvKernelOf_B_B * KBx; } } return(pvec); }
/// <summary> /// Sets this instance to the ratio of two sparse GPs. /// </summary> /// <param name="numerator">Sparse GP</param> /// <param name="denominator">Sparse GP</param> /// <param name="forceProper"></param> public void SetToRatio(SparseGP numerator, SparseGP denominator, bool forceProper = false) { if (numerator.FixedParameters != denominator.FixedParameters) { throw new ArgumentException("SparseGPs do not have the same FixedParameters. numerator.FixedParameters = " + numerator.FixedParameters + ", denominator.FixedParameters = " + denominator.FixedParameters); } FixedParameters = numerator.FixedParameters; if (numerator.IncludePrior) { IncludePrior = !denominator.IncludePrior; } else if (denominator.IncludePrior) { throw new ArgumentException("Only the denominator includes the prior. Cannot divide."); } else { IncludePrior = false; // neither include the prior } if (numerator.IsPointMass) { if (denominator.IsPointMass) { if (numerator.Point.Equals(denominator.Point)) { SetToUniform(); } else { throw new DivideByZeroException(); } } else { Point = numerator.Point; } } else if (denominator.IsPointMass) { throw new DivideByZeroException(); } else { // neither is point mass InducingDist.SetToRatio(numerator.InducingDist, denominator.InducingDist, forceProper); pointFunc = null; ClearCachedValues(); } }
/// <summary> /// Sets one sparse GP to another. Everything is copied /// except the FixedParameters and the lsit of rank 1 potentials /// which are referenced. /// </summary> /// <param name="that">The sparse GP to copy</param> public void SetTo(SparseGP that) { fixedParameters = that.FixedParameters; InducingDist.SetTo(that.InducingDist); IncludePrior = that.IncludePrior; pointFunc = that.pointFunc; if (that.alpha != null) { alpha = Vector.Copy(that.alpha); } else { alpha = null; } if (that.beta != null) { beta = new PositiveDefiniteMatrix(that.beta as Matrix); } else { beta = null; } if (that.meanB != null) { meanB = Vector.Copy(that.meanB); } else { meanB = null; } if (that.varBB != null) { varBB = new PositiveDefiniteMatrix(that.varBB as Matrix); } else { varBB = null; } }
/// <summary> /// Get the integral of this distribution times another distribution raised to a power. /// </summary> /// <param name="that"></param> /// <param name="power"></param> /// <returns></returns> public double GetLogAverageOfPower(SparseGP that, double power) { throw new NotImplementedException(); if (IsPointMass) { return(power * that.GetLogProb(Point)); } else if (that.IsPointMass) { if (power < 0) { throw new DivideByZeroException("The exponent is negative and the distribution is a point mass"); } return(this.GetLogProb(that.Point)); } else { } }
#pragma warning disable 162 #endif /// <summary> /// Gets the log of the integral of the product of this SparseGP and that SparseGP /// </summary> /// <param name="that"></param> /// <returns></returns> public double GetLogAverageOf(SparseGP that) { if (this.FixedParameters != that.FixedParameters) { throw new ArgumentException("SparseGPs do not have the same FixedParameters. this.FixedParameters = " + this.FixedParameters + ", that.FixedParameters = " + that.FixedParameters); } if (this.IncludePrior && that.IncludePrior) { throw new ArgumentException("Both SparseGPs include the prior"); } if (that.IsPointMass) { return(GetLogProb(that.Point)); } if (this.IsPointMass) { return(that.GetLogProb(this.Point)); } if (this.IncludePrior && !that.IncludePrior) { // gBB is the distribution of the function on the basis VectorGaussian gBB; if (true) { gBB = new VectorGaussian(InducingDist.Dimension); gBB.Precision.SetToSum(FixedParameters.InvKernelOf_B_B, InducingDist.Precision); gBB.MeanTimesPrecision.SetTo(InducingDist.MeanTimesPrecision); // since prior has zero mean } else { // equivalent but slower gBB = VectorGaussian.FromMeanAndVariance(Mean_B, Var_B_B); } return(gBB.GetLogAverageOf(that.InducingDist)); } if (!this.IncludePrior && that.IncludePrior) { return(that.GetLogAverageOf(this)); } throw new NotImplementedException(); }
/// <summary> /// Sets this sparse GP the the power of another sparse GP /// </summary> /// <param name="dist"></param> /// <param name="exponent"></param> public void SetToPower(SparseGP dist, double exponent) { if (exponent == 1.0) { SetTo(dist); } else { FixedParameters = dist.FixedParameters; if (exponent == 0.0) { SetToUniform(); } else if (dist.IsPointMass) { if (exponent < 0) { throw new DivideByZeroException("The exponent is negative and the distribution is a point mass"); } else { Point = dist.Point; } } else if (dist.IncludePrior) { throw new ArgumentException("Cannot raise prior to a power."); } else { IncludePrior = dist.IncludePrior; InducingDist.SetToPower(dist.InducingDist, exponent); pointFunc = null; ClearCachedValues(); } } }
/// <summary> /// Copy constructor /// </summary> /// <param name="that"></param> public SparseGP(SparseGP that) { InducingDist = new VectorGaussian(that.FixedParameters.NumberBasisPoints); SetTo(that); }
#pragma warning restore 162 #endif /// <summary> /// The expected logarithm of that distribution under this distribution /// </summary> /// <param name="that"></param> /// <returns></returns> /// <remarks>Not yet implemented</remarks> public double GetAverageLog(SparseGP that) { throw new NotImplementedException(); }