private bool EnablesControlFlowGuard(BinaryAnalyzerContext context)
        {
            PEHeader peHeader = context.PE.PEHeaders.PEHeader;
            if (((uint)peHeader.DllCharacteristics & IMAGE_DLLCHARACTERISTICS_CONTROLFLOWGUARD) == 0)
            {
                return false;
            }

            SafePointer loadConfigRVA = new SafePointer(context.PE.ImageBytes, peHeader.LoadConfigTableDirectory.RelativeVirtualAddress);
            if (loadConfigRVA.Address == 0)
            {
                return false;
            }

            SafePointer loadConfigVA = context.PE.RVA2VA(loadConfigRVA);

            if (context.PE.Is64Bit)
            {
                ImageLoadConfigDirectory64 loadConfig = new ImageLoadConfigDirectory64(peHeader, loadConfigVA);

                Int32 imageDirectorySize = (Int32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.Size);
                UInt64 guardCFCheckFunctionPointer = (UInt64)loadConfig.GetField(ImageLoadConfigDirectory64.Fields.GuardCFCheckFunctionPointer);
                UInt64 guardCFFunctionTable = (UInt64)loadConfig.GetField(ImageLoadConfigDirectory64.Fields.GuardCFFunctionTable);
                UInt32 guardFlags = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory64.Fields.GuardFlags);

                if (imageDirectorySize >= IMAGE_LOAD_CONFIG_MINIMUM_SIZE_64 &&
                    guardCFCheckFunctionPointer != 0 &&
                    guardCFFunctionTable != 0 &&
                    (guardFlags & IMAGE_GUARD_CF_CHECKS) == IMAGE_GUARD_CF_CHECKS)
                {
                    return true;
                }
            }
            else
            {
                ImageLoadConfigDirectory32 loadConfig = new ImageLoadConfigDirectory32(peHeader, loadConfigVA);

                Int32 imageDirectorySize = (Int32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.Size);
                UInt32 guardCFCheckFunctionPointer = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.GuardCFCheckFunctionPointer);
                UInt32 guardCFFunctionTable = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.GuardCFFunctionTable);
                UInt32 guardFlags = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.GuardFlags);

                if (imageDirectorySize >= IMAGE_LOAD_CONFIG_MINIMUM_SIZE_32 &&
                    guardCFCheckFunctionPointer != 0 &&
                    guardCFFunctionTable != 0 &&
                    (guardFlags & IMAGE_GUARD_CF_CHECKS) == IMAGE_GUARD_CF_CHECKS)
                {
                    return true;
                }
            }

            return false;
        }
示例#2
0
        public void Analyze(BinaryAnalyzerContext context)
        {
            PEHeader peHeader = context.PE.PEHeaders.PEHeader;

            /* IMAGE_DLLCHARACTERISTICS_NO_SEH */
            if ((peHeader.DllCharacteristics & DllCharacteristics.NoSeh) == DllCharacteristics.NoSeh)
            {
                // '{0}' is an x86 binary that does not use SEH, making it an invalid
                // target for exploits that attempt to replace SEH jump targets with
                // attacker-controlled shellcode.
                context.Logger.Log(MessageKind.Pass, context,
                    RuleUtilities.BuildMessage(context,
                        RulesResources.EnableSafeSEH_NoSEH_Pass));
                return;
            }

            // This will not raise false positives for non-C and C++ code, because the above
            // check for IMAGE_DLLCHARACTERISTICS_NO_SEH excludes things that don't actually
            // handle SEH exceptions like .NET ngen'd code.
            if (peHeader.LoadConfigTableDirectory.RelativeVirtualAddress == 0)
            {
                // '{0}' is an x86 binary which does not contain a load configuration table,
                // indicating that it does not enable the SafeSEH mitigation. SafeSEH makes
                // it more difficult to exploit memory corruption vulnerabilities that can
                // overwrite SEH control blocks on the stack, by verifying that the location
                // to which a thrown SEH exception would jump is indeed defined as an
                // exception handler in the source program (and not shellcode). To resolve
                // this issue, supply the /SafeSEH flag on the linker command line. Note
                // that you will need to configure your build system to supply this flag for
                // x86 builds only, as the /SafeSEH flag is invalid when linking for ARM and x64.
                context.Logger.Log(MessageKind.Fail, context,
                    RuleUtilities.BuildMessage(context,
                        RulesResources.EnableSafeSEH_NoLoadConfigurationTable_Fail));
                return;
            }

            SafePointer sp = new SafePointer(context.PE.ImageBytes, peHeader.LoadConfigTableDirectory.RelativeVirtualAddress);
            SafePointer loadConfigVA = context.PE.RVA2VA(sp);
            ImageLoadConfigDirectory32 loadConfig = new ImageLoadConfigDirectory32(peHeader, loadConfigVA);

            Int32 seHandlerSize = (Int32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.Size);
            if (seHandlerSize < 72)
            {
                // contains an unexpectedly small load configuration table {size 0}
                string seHandlerSizeText = String.Format(RulesResources.EnableSafeSEH_LoadConfigurationIsTooSmall_Fail, seHandlerSize.ToString());

                context.Logger.Log(MessageKind.Fail, context,
                    RuleUtilities.BuildMessage(context,
                        RulesResources.EnableSafeSEH_Formatted_Fail,
                        RulesResources.EnableSafeSEH_LoadConfigurationIsTooSmall_Fail,
                        seHandlerSizeText));
                return;
            }

            UInt32 seHandlerTable = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.SEHandlerTable);
            UInt32 seHandlerCount = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.SEHandlerCount);

            if (seHandlerTable == 0 || seHandlerCount == 0)
            {
                string failureKind = null;
                if (seHandlerTable == 0)
                {
                    // has an empty SE handler table in the load configuration table
                    failureKind = RulesResources.EnableSafeSEH_EmptySEHandlerTable_Fail;
                }
                else if (seHandlerCount == 0)
                {
                    // has zero SE handlers in the load configuration table
                    failureKind = RulesResources.EnableSafeSEH_ZeroCountSEHandlers_Fail;
                }

                // '{0}' is an x86 binary which {1}, indicating that it does not enable the SafeSEH
                // mitigation. SafeSEH makes it more difficult to exploit memory corruption
                // vulnerabilities that can overwrite SEH control blocks on the stack, by verifying
                // that the location to which a thrown SEH exception would jump is indeed defined
                // as an exception handler in the source program (and not shellcode). To resolve
                // this issue, supply the /SafeSEH flag on the linker command line. Note that you
                // will need to configure your build system to supply this flag for x86 builds only,
                // as the /SafeSEH flag is invalid when linking for ARM and x64.
                context.Logger.Log(MessageKind.Fail, context,
                    RuleUtilities.BuildMessage(context,
                        RulesResources.EnableSafeSEH_Formatted_Fail, failureKind));
                return;
            }

            // ''{0}' is an x86 binary that enables SafeSEH, a mitigation that verifies SEH exception
            // jump targets are defined as exception handlers in the program (and not shellcode).
            context.Logger.Log(MessageKind.Pass, context,
                RuleUtilities.BuildMessage(context,
                    RulesResources.EnableSafeSEH_SafeSEHEnabled_Pass));
        }
        private bool Validate32BitImage(BinaryAnalyzerContext context)
        {
            PEHeader peHeader = context.PE.PEHeaders.PEHeader;
            SafePointer sp = new SafePointer(context.PE.ImageBytes, peHeader.LoadConfigTableDirectory.RelativeVirtualAddress);
            SafePointer loadConfigVA = context.PE.RVA2VA(sp);
            ImageLoadConfigDirectory32 loadConfig = new ImageLoadConfigDirectory32(peHeader, loadConfigVA);

            UInt32 cookieVA = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.SecurityCookie);
            UInt32 baseAddress = (UInt32)peHeader.ImageBase;

            // we need to find the offset in the file based on the cookie's VA
            UInt32 sectionSize, sectionVA = 0;
            SectionHeader ish = new SectionHeader();
            bool foundCookieSection = false;
            foreach (SectionHeader t in context.PE.PEHeaders.SectionHeaders)
            {
                sectionVA = (UInt32)t.VirtualAddress + baseAddress;
                sectionSize = (UInt32)t.VirtualSize;
                if ((cookieVA >= sectionVA) &&
                    (cookieVA < sectionVA + sectionSize))
                {
                    ish = t;
                    foundCookieSection = true;
                    break;
                }
            }

            if (!foundCookieSection)
            {
                LogCouldNotLocateCookie(context);
                return false;
            }

            UInt64 fileCookieOffset = (cookieVA - baseAddress) - (sectionVA - baseAddress) + (UInt32)ish.PointerToRawData;
            SafePointer fileCookiePtr = loadConfigVA;
            fileCookiePtr.Address = (int)fileCookieOffset;
            UInt32 cookie = BitConverter.ToUInt32(fileCookiePtr.GetBytes(8), 0);

            if (!StackProtectionUtilities.DefaultCookiesX86.Contains(cookie) && context.PE.Machine == Machine.I386)
            {
                LogFailure(context, cookie.ToString("x"));
                return false;
            }

            return true;
        }
        private bool Validate32BitImage(BinaryAnalyzerContext context)
        {
            PEHeader peHeader = context.PE.PEHeaders.PEHeader;
            SafePointer sp = new SafePointer(context.PE.ImageBytes, peHeader.LoadConfigTableDirectory.RelativeVirtualAddress);
            SafePointer loadConfigVA = context.PE.RVA2VA(sp);
            ImageLoadConfigDirectory32 loadConfig = new ImageLoadConfigDirectory32(peHeader, loadConfigVA);

            UInt32 cookieVA = (UInt32)loadConfig.GetField(ImageLoadConfigDirectory32.Fields.SecurityCookie);
            UInt32 baseAddress = (UInt32)peHeader.ImageBase;

            // we need to find the offset in the file based on the cookie's VA
            UInt32 sectionSize, sectionVA = 0;
            SectionHeader ish = new SectionHeader();
            bool foundCookieSection = false;
            foreach (SectionHeader t in context.PE.PEHeaders.SectionHeaders)
            {
                sectionVA = (UInt32)t.VirtualAddress + baseAddress;
                sectionSize = (UInt32)t.VirtualSize;
                if ((cookieVA >= sectionVA) &&
                    (cookieVA < sectionVA + sectionSize))
                {
                    ish = t;
                    foundCookieSection = true;
                    break;
                }
            }

            if (!foundCookieSection)
            {
                // '{0}' is a C or C++binary that enables the stack protection feature but the security cookie could not be located. The binary may be corrupted.
                context.Logger.Log(MessageKind.Fail, context,
                        RuleUtilities.BuildMessage(context,
                            RulesResources.DoNotModifyStackProtectionCookie_CouldNotLocateCookie_Fail));
                return false;
            }

            UInt64 fileCookieOffset = (cookieVA - baseAddress) - (sectionVA - baseAddress) + (UInt32)ish.PointerToRawData;
            SafePointer fileCookiePtr = loadConfigVA;
            fileCookiePtr.Address = (int)fileCookieOffset;
            UInt32 cookie = BitConverter.ToUInt32(fileCookiePtr.GetBytes(8), 0);

            if (!StackProtectionUtilities.DefaultCookiesX86.Contains(cookie) && context.PE.Machine == Machine.I386)
            {
                // '{0}' is a C or C++ binary that interferes with the stack protector. The
                // stack protector (/GS) is a security feature of the compiler which makes
                // it more difficult to exploit stack buffer overflow memory corruption
                // vulnerabilities. The stack protector relies on a random number, called
                // the "security cookie", to detect these buffer overflows. This 'cookie'
                // is statically linked with your binary from a Visual C++ library in the
                // form of the symbol __security_cookie. On recent Windows versions, the
                // loader looks for the magic statically linked value of this cookie, and
                // initializes the cookie with a far better source of entropy -- the system's
                // secure random number generator -- rather than the limited random number
                // generator available early in the C runtime startup code. When this symbol
                // is not the default value, the additional entropy is not injected by the
                // operating system, reducing the effectiveness of the stack protector. To
                // resolve this issue, ensure that your code does not reference or create a
                // symbol named __security_cookie or __security_cookie_complement. NOTE:
                // the modified cookie value detected was: {1}
                context.Logger.Log(MessageKind.Fail, context,
                    RuleUtilities.BuildMessage(context,
                    RulesResources.DoNotModifyStackProtectionCookie_Fail, cookie.ToString("x")));
                return false;
            }

            return true;
        }