/// <summary> /// Produces the EGNF (Extended Greibach Normal Form) for the grammar g. /// Implements a variation of the Blum-Koch algorithm. /// (Inf. and Comp. vol.150, pp.112-118, 1999) /// </summary> /// <param name="g">the grammar to be normalized</param> /// <param name="removeEpsilonsAndUselessSymbols">if true, first removes epsilons and useless symbols, otherwise assumes that epsilons do not occur</param> /// <returns>Extended Greibach Normal Form of g</returns> public static ContextFreeGrammar MkEGNF(ContextFreeGrammar g, bool removeEpsilonsAndUselessSymbols) { if (removeEpsilonsAndUselessSymbols) g = g.RemoveEpsilonsAndUselessSymbols(); if (g.IsInGNF()) return g; var leavesP = new List<Production>(); var revP = new Dictionary<Nonterminal, List<Pair<GrammarSymbol[], Nonterminal>>>(); int nonterminalID = 0; #region compute leavesP and revP foreach (Nonterminal v in g.variables) revP[v] = new List<Pair<GrammarSymbol[], Nonterminal>>(); foreach (Production p in g.GetProductions()) if (!(p.First is Nonterminal)) leavesP.Add(p); else revP[(Nonterminal)p.First].Add(new Pair<GrammarSymbol[], Nonterminal>(p.Rest, p.Lhs)); #endregion var W = new Dictionary<Nonterminal, HashSet<Nonterminal>>(); var startSymbol = new Dictionary<Nonterminal, Nonterminal>(); #region create new start symbols and compute unit closures foreach (Nonterminal v in g.variables) { W[v] = g.GetUnitClosure(v); startSymbol[v] = new Nonterminal(nonterminalID++); } #endregion var P = new Dictionary<Nonterminal, List<Production>>(); #region construct intermediate productions in P for each variable B foreach (Nonterminal B in g.variables) { var S_B = startSymbol[B]; var W_B = W[B]; //unit closure of B var Bvar = new Dictionary<Nonterminal, Nonterminal>(); Stack<Nonterminal> stack = new Stack<Nonterminal>(); HashSet<Nonterminal> visited = new HashSet<Nonterminal>(); var S_B_list = new List<Production>(); P[S_B] = S_B_list; foreach (Production p in leavesP) { S_B_list.Add(new Production(S_B, p.Rhs, Lookup(Bvar, p.Lhs, ref nonterminalID))); if (visited.Add(p.Lhs)) stack.Push(p.Lhs); if (W_B.Contains(p.Lhs)) S_B_list.Add(new Production(S_B, p.Rhs)); } while (stack.Count > 0) { Nonterminal C = stack.Pop(); Nonterminal C_B = Lookup(Bvar, C, ref nonterminalID); List<Production> C_B_list; if (!P.TryGetValue(C_B, out C_B_list)) { C_B_list = new List<Production>(); P[C_B] = C_B_list; } foreach (var t in revP[C]) { Nonterminal D = t.Second; Nonterminal D_B = Lookup(Bvar, D, ref nonterminalID); C_B_list.Add(new Production(C_B, t.First, D_B)); if (t.First.Length > 0 && W_B.Contains(D)) C_B_list.Add(new Production(C_B, t.First)); if (visited.Add(D)) stack.Push(D); } } } #endregion //produce the union of P and g.productionMap in H //and replace each production 'A ::= B alpha' by 'A ::= S_B alpha" var Hprods = new Dictionary<Nonterminal, List<Production>>(); #region compute Hprods foreach (Nonterminal A in g.variables) { var A_prods = new List<Production>(); Hprods[A] = A_prods; foreach (Production p in g.productionMap[A]) { if (p.First is Nonterminal && !p.IsUnit) { GrammarSymbol[] rhs = new GrammarSymbol[p.Rhs.Length]; rhs[0] = startSymbol[(Nonterminal)p.First]; Array.Copy(p.Rhs, 1, rhs, 1, rhs.Length - 1); Production q = new Production(p.Lhs, rhs); A_prods.Add(q); } else A_prods.Add(p); } } foreach (Nonterminal A in P.Keys) { var A_prods = new List<Production>(); Hprods[A] = A_prods; foreach (Production p in P[A]) { if (p.First is Nonterminal && !p.IsUnit) { GrammarSymbol[] rhs = new GrammarSymbol[p.Rhs.Length]; rhs[0] = startSymbol[(Nonterminal)p.First]; Array.Copy(p.Rhs, 1, rhs, 1, rhs.Length - 1); Production q = new Production(p.Lhs, rhs); A_prods.Add(q); } else A_prods.Add(p); } } #endregion ContextFreeGrammar H = new ContextFreeGrammar(new List<Nonterminal>(Hprods.Keys), g.startSymbol, Hprods); //Console.WriteLine("--------- H:"); //H.Display(Console.Out); //eliminate useless symbols from H //this may dramatically decrease the number of productions ContextFreeGrammar H1 = H.RemoveUselessSymbols(); //Console.WriteLine("---------- H1:"); //H1.Display(Console.Out); List<Nonterminal> egnfVars = new List<Nonterminal>(); Dictionary<Nonterminal, List<Production>> egnfProds = new Dictionary<Nonterminal, List<Production>>(); Stack<Nonterminal> egnfStack = new Stack<Nonterminal>(); HashSet<Nonterminal> egnfVisited = new HashSet<Nonterminal>(); egnfStack.Push(H1.startSymbol); egnfVisited.Add(H1.startSymbol); egnfVars.Add(H1.startSymbol); egnfProds[H1.startSymbol] = new List<Production>(); #region eliminate temp start symbols and produce the EGNF form while (egnfStack.Count > 0) { var A = egnfStack.Pop(); List<Production> A_prods = egnfProds[A]; foreach (Production p in H1.productionMap[A]) { if (!(p.First is Nonterminal) || p.IsUnit) { A_prods.Add(p); foreach (Nonterminal x in p.GetVariables()) if (egnfVisited.Add(x)) { egnfStack.Push(x); egnfVars.Add(x); egnfProds[x] = new List<Production>(); } } else { Nonterminal S_B = (Nonterminal)p.First; //here we know that S_B is a temp start symbol foreach (Production t in H1.productionMap[S_B]) { int k = t.Rhs.Length; GrammarSymbol[] rhs = new GrammarSymbol[k + p.Rhs.Length - 1]; for (int i = 0; i < k; i++) rhs[i] = t.Rhs[i]; for (int i = 1; i < p.Rhs.Length; i++) rhs[k + i - 1] = p.Rhs[i]; Production q = new Production(A, rhs); A_prods.Add(q); foreach (Nonterminal x in q.GetVariables()) if (egnfVisited.Add(x)) { egnfStack.Push(x); egnfVars.Add(x); egnfProds[x] = new List<Production>(); } } } } } #endregion ContextFreeGrammar egnf = new ContextFreeGrammar(egnfVars, H1.startSymbol, egnfProds); return egnf; }
/// <summary> /// Produces the EGNF (Extended Greibach Normal Form) for the grammar g. /// Implements a variation of the Blum-Koch algorithm. /// (Inf. and Comp. vol.150, pp.112-118, 1999) /// </summary> /// <param name="g">the grammar to be normalized</param> /// <param name="removeEpsilonsAndUselessSymbols">if true, first removes epsilons and useless symbols, otherwise assumes that epsilons do not occur</param> /// <returns>Extended Greibach Normal Form of g</returns> public static ContextFreeGrammar MkEGNF(ContextFreeGrammar g, bool removeEpsilonsAndUselessSymbols) { if (removeEpsilonsAndUselessSymbols) { g = g.RemoveEpsilonsAndUselessSymbols(); } if (g.IsInGNF()) { return(g); } var leavesP = new List <Production>(); var revP = new Dictionary <Nonterminal, List <Tuple <GrammarSymbol[], Nonterminal> > >(); int nonterminalID = 0; #region compute leavesP and revP foreach (Nonterminal v in g.variables) { revP[v] = new List <Tuple <GrammarSymbol[], Nonterminal> >(); } foreach (Production p in g.GetProductions()) { if (!(p.First is Nonterminal)) { leavesP.Add(p); } else { revP[(Nonterminal)p.First].Add(new Tuple <GrammarSymbol[], Nonterminal>(p.Rest, p.Lhs)); } } #endregion var W = new Dictionary <Nonterminal, HashSet <Nonterminal> >(); var startSymbol = new Dictionary <Nonterminal, Nonterminal>(); #region create new start symbols and compute unit closures foreach (Nonterminal v in g.variables) { W[v] = g.GetUnitClosure(v); startSymbol[v] = new Nonterminal(nonterminalID++); } #endregion var P = new Dictionary <Nonterminal, List <Production> >(); #region construct intermediate productions in P for each variable B foreach (Nonterminal B in g.variables) { var S_B = startSymbol[B]; var W_B = W[B]; //unit closure of B var Bvar = new Dictionary <Nonterminal, Nonterminal>(); Stack <Nonterminal> stack = new Stack <Nonterminal>(); HashSet <Nonterminal> visited = new HashSet <Nonterminal>(); var S_B_list = new List <Production>(); P[S_B] = S_B_list; foreach (Production p in leavesP) { S_B_list.Add(new Production(S_B, p.Rhs, Lookup(Bvar, p.Lhs, ref nonterminalID))); if (visited.Add(p.Lhs)) { stack.Push(p.Lhs); } if (W_B.Contains(p.Lhs)) { S_B_list.Add(new Production(S_B, p.Rhs)); } } while (stack.Count > 0) { Nonterminal C = stack.Pop(); Nonterminal C_B = Lookup(Bvar, C, ref nonterminalID); List <Production> C_B_list; if (!P.TryGetValue(C_B, out C_B_list)) { C_B_list = new List <Production>(); P[C_B] = C_B_list; } foreach (var t in revP[C]) { Nonterminal D = t.Item2; Nonterminal D_B = Lookup(Bvar, D, ref nonterminalID); C_B_list.Add(new Production(C_B, t.Item1, D_B)); if (t.Item1.Length > 0 && W_B.Contains(D)) { C_B_list.Add(new Production(C_B, t.Item1)); } if (visited.Add(D)) { stack.Push(D); } } } } #endregion //produce the union of P and g.productionMap in H //and replace each production 'A ::= B alpha' by 'A ::= S_B alpha" var Hprods = new Dictionary <Nonterminal, List <Production> >(); #region compute Hprods foreach (Nonterminal A in g.variables) { var A_prods = new List <Production>(); Hprods[A] = A_prods; foreach (Production p in g.productionMap[A]) { if (p.First is Nonterminal && !p.IsUnit) { GrammarSymbol[] rhs = new GrammarSymbol[p.Rhs.Length]; rhs[0] = startSymbol[(Nonterminal)p.First]; Array.Copy(p.Rhs, 1, rhs, 1, rhs.Length - 1); Production q = new Production(p.Lhs, rhs); A_prods.Add(q); } else { A_prods.Add(p); } } } foreach (Nonterminal A in P.Keys) { var A_prods = new List <Production>(); Hprods[A] = A_prods; foreach (Production p in P[A]) { if (p.First is Nonterminal && !p.IsUnit) { GrammarSymbol[] rhs = new GrammarSymbol[p.Rhs.Length]; rhs[0] = startSymbol[(Nonterminal)p.First]; Array.Copy(p.Rhs, 1, rhs, 1, rhs.Length - 1); Production q = new Production(p.Lhs, rhs); A_prods.Add(q); } else { A_prods.Add(p); } } } #endregion ContextFreeGrammar H = new ContextFreeGrammar(new List <Nonterminal>(Hprods.Keys), g.startSymbol, Hprods); //Console.WriteLine("--------- H:"); //H.Display(Console.Out); //eliminate useless symbols from H //this may dramatically decrease the number of productions ContextFreeGrammar H1 = H.RemoveUselessSymbols(); //Console.WriteLine("---------- H1:"); //H1.Display(Console.Out); List <Nonterminal> egnfVars = new List <Nonterminal>(); Dictionary <Nonterminal, List <Production> > egnfProds = new Dictionary <Nonterminal, List <Production> >(); Stack <Nonterminal> egnfStack = new Stack <Nonterminal>(); HashSet <Nonterminal> egnfVisited = new HashSet <Nonterminal>(); egnfStack.Push(H1.startSymbol); egnfVisited.Add(H1.startSymbol); egnfVars.Add(H1.startSymbol); egnfProds[H1.startSymbol] = new List <Production>(); #region eliminate temp start symbols and produce the EGNF form while (egnfStack.Count > 0) { var A = egnfStack.Pop(); List <Production> A_prods = egnfProds[A]; foreach (Production p in H1.productionMap[A]) { if (!(p.First is Nonterminal) || p.IsUnit) { A_prods.Add(p); foreach (Nonterminal x in p.GetVariables()) { if (egnfVisited.Add(x)) { egnfStack.Push(x); egnfVars.Add(x); egnfProds[x] = new List <Production>(); } } } else { Nonterminal S_B = (Nonterminal)p.First; //here we know that S_B is a temp start symbol foreach (Production t in H1.productionMap[S_B]) { int k = t.Rhs.Length; GrammarSymbol[] rhs = new GrammarSymbol[k + p.Rhs.Length - 1]; for (int i = 0; i < k; i++) { rhs[i] = t.Rhs[i]; } for (int i = 1; i < p.Rhs.Length; i++) { rhs[k + i - 1] = p.Rhs[i]; } Production q = new Production(A, rhs); A_prods.Add(q); foreach (Nonterminal x in q.GetVariables()) { if (egnfVisited.Add(x)) { egnfStack.Push(x); egnfVars.Add(x); egnfProds[x] = new List <Production>(); } } } } } } #endregion ContextFreeGrammar egnf = new ContextFreeGrammar(egnfVars, H1.startSymbol, egnfProds); return(egnf); }
/// <summary> /// Return all useful nonterminal symbols. If checkBackwardsOnly is true, assume that all symbols are reachable from the start symbol. /// </summary> public HashSet <string> GetUsefulNonterminals(bool checkBackwardsOnly) { HashSet <Nonterminal> useful_backwards = new HashSet <Nonterminal>(); //Lemma 4.1, p. 88, Hopcroft-Ullman #region backward reachability var variableNodeMap = new Dictionary <Nonterminal, VariableNode>(); foreach (Nonterminal v in this.variables) { variableNodeMap[v] = new VariableNode(); } List <ProductionNode> productionLeaves = new List <ProductionNode>(); foreach (Nonterminal v in this.variables) { VariableNode parent = variableNodeMap[v]; foreach (Production p in this.productionMap[v]) { var children = Array.ConvertAll(new List <Nonterminal>(p.GetVariables()).ToArray(), w => variableNodeMap[w]); ProductionNode pn = new ProductionNode(parent, children); if (children.Length == 0) { productionLeaves.Add(pn); } else { foreach (VariableNode child in children) { child.parents.Add(pn); } } } } foreach (ProductionNode leaf in productionLeaves) { leaf.PropagateMark(); } foreach (Nonterminal v in this.variables) { if (variableNodeMap[v].isMarked) { useful_backwards.Add(v); } } #endregion //returns the empty set because the language is empty if (!useful_backwards.Contains(this.startSymbol)) { return(new HashSet <string>()); } //don't bother to check forward if (checkBackwardsOnly) { var res = new HashSet <string>(); foreach (var nt in useful_backwards) { res.Add(nt.Name); } return(res); } ContextFreeGrammar g1 = this.RestrictToVariables(useful_backwards); HashSet <Nonterminal> useful_forwards = new HashSet <Nonterminal>(); //Lemma 4.2, p. 89, Hopcroft-Ullman #region forward reachability Stack <Nonterminal> stack = new Stack <Nonterminal>(); stack.Push(g1.StartSymbol); useful_forwards.Add(g1.StartSymbol); while (stack.Count > 0) { Nonterminal v = stack.Pop(); foreach (Production p in g1.GetProductions(v)) { foreach (Nonterminal u in p.GetVariables()) { if (!useful_forwards.Contains(u)) { useful_forwards.Add(u); stack.Push(u); } } } } #endregion HashSet <string> usefulSymbols = new HashSet <string>(); foreach (var nt in useful_forwards) { if (useful_backwards.Contains(nt)) { usefulSymbols.Add(nt.Name); } } return(usefulSymbols); }
/// <summary> /// Produces the GNF (Greibach Normal Form) for the grammar g. /// If g is not already in GNF, first makes CNF. /// Implements a variation of the Koch-Blum algorithm. (STACS 97, pp. 47-54) /// </summary> /// <param name="g"></param> /// <param name="removeEpsilonsUselessSymbolsUnitsProductions"></param> /// <returns></returns> public static ContextFreeGrammar MkGNF(ContextFreeGrammar g, bool removeEpsilonsUselessSymbolsUnitsProductions) { if (removeEpsilonsUselessSymbolsUnitsProductions) { g = g.RemoveEpsilonsAndUselessSymbols().RemoveUnitProductions(); } if (g.IsInGNF()) { return(g); } ContextFreeGrammar cnf = MkCNF(g, false); var Vars = cnf.variables; int nonterminalID = 0; var M = new Dictionary <Nonterminal, Automaton <GrammarSymbol> >(); #region construct the automata M[B] for all variables B int id = 0; var initStateMap = new Dictionary <Nonterminal, int>(); var finalStateMap = new Dictionary <Nonterminal, int>(); foreach (Nonterminal B in Vars) { initStateMap[B] = id++; finalStateMap[B] = id++; } var movesOfM = new Dictionary <Nonterminal, List <Move <GrammarSymbol> > >(); foreach (Nonterminal B in Vars) { movesOfM[B] = new List <Move <GrammarSymbol> >(); } #region construct the moves of the automata foreach (Nonterminal B in Vars) { var variableToStateMap = new Dictionary <Nonterminal, int>(); Stack <Nonterminal> stack = new Stack <Nonterminal>(); stack.Push(B); int initState = initStateMap[B]; variableToStateMap[B] = finalStateMap[B]; while (stack.Count > 0) { Nonterminal C = stack.Pop(); foreach (Production p in cnf.GetProductions(C)) { if (p.IsSingleExprinal) { movesOfM[B].Add(Move <GrammarSymbol> .Create(initState, variableToStateMap[C], p.First)); } else { Nonterminal D = (Nonterminal)p.First; //using the fact that the grammar is in CNF if (!variableToStateMap.ContainsKey(D)) { //visit all variables reachable that have not already been visited variableToStateMap.Add(D, id++); stack.Push(D); } GrammarSymbol E = p.Rhs[1]; movesOfM[B].Add(Move <GrammarSymbol> .Create(variableToStateMap[D], variableToStateMap[C], E)); } } } } #endregion foreach (Nonterminal B in Vars) { M[B] = Automaton <GrammarSymbol> .Create(null, initStateMap[B], new int[] { finalStateMap[B] }, movesOfM[B]); } #endregion var G_ = new Dictionary <Nonterminal, ContextFreeGrammar>(); #region construct corresponding intermediate grammars G_[B] corresponding to M[B] foreach (Nonterminal B in Vars) { var MB = M[B]; bool MBfinalStateHasVariableMoves = FinalStateHasVariableMoves(MB); var productions = new Dictionary <Nonterminal, List <Production> >(); Nonterminal startSymbol = new Nonterminal(nonterminalID++); var vars = new List <Nonterminal>(); vars.Add(startSymbol); productions[startSymbol] = new List <Production>(); foreach (var move in MB.GetMovesFrom(MB.InitialState)) { if (move.TargetState == MB.FinalState) { productions[startSymbol].Add(new Production(startSymbol, move.Label)); } if (move.TargetState != MB.FinalState || MBfinalStateHasVariableMoves) { var C = new Nonterminal("Q" + move.TargetState); productions[startSymbol].Add(new Production(startSymbol, move.Label, C)); if (!productions.ContainsKey(C)) { productions[C] = new List <Production>(); vars.Add(C); } } } foreach (int state in MB.States) { if (state != MB.InitialState) { foreach (Move <GrammarSymbol> move in MB.GetMovesFrom(state)) { Nonterminal D = new Nonterminal("Q" + state); Nonterminal C = new Nonterminal("Q" + move.TargetState); if (!productions.ContainsKey(D)) { productions[D] = new List <Production>(); vars.Add(D); } Nonterminal E = (Nonterminal)move.Label; if (move.TargetState == MB.FinalState) { productions[D].Add(new Production(D, E)); } if (move.TargetState != MB.FinalState || MBfinalStateHasVariableMoves) { productions[D].Add(new Production(D, E, C)); //we pretend here that E is a terminal if (!productions.ContainsKey(C)) { productions[C] = new List <Production>(); vars.Add(C); } } } } } G_[B] = new ContextFreeGrammar(vars, startSymbol, productions); } #endregion var G = new Dictionary <Nonterminal, ContextFreeGrammar>(); #region construct the corresponding temporary G[B]'s foreach (Nonterminal B in Vars) { var G_B = G_[B]; var productions = new Dictionary <Nonterminal, List <Production> >(); //var vars = new List<Variable>(); Nonterminal startSymbol = G_B.startSymbol; productions[startSymbol] = G_B.productionMap[startSymbol]; foreach (Nonterminal D in G_B.variables) { if (!D.Equals(startSymbol)) { var productions_D = new List <Production>(); productions[D] = productions_D; foreach (Production p in G_B.productionMap[D]) { Nonterminal E = (Nonterminal)p.First; var G_E = G_[E]; if (p.IsUnit) { foreach (Production q in G_E.productionMap[G_E.startSymbol]) { productions_D.Add(new Production(D, q.Rhs)); } } else { foreach (Production q in G_E.productionMap[G_E.startSymbol]) { GrammarSymbol[] symbols = new GrammarSymbol[q.Rhs.Length + 1]; Array.Copy(q.Rhs, symbols, q.Rhs.Length); symbols[q.Rhs.Length] = p.Rhs[1]; productions_D.Add(new Production(D, symbols)); } } } } } //ignore the variable list, it is not used G[B] = new ContextFreeGrammar(null, startSymbol, productions); } #endregion #region construct the final GNF from the G[B]'s var productionsGNF = new List <Production>(); foreach (Nonterminal A in cnf.variables) { foreach (Production p in cnf.productionMap[A]) { if (p.IsSingleExprinal) { productionsGNF.Add(p); } else { Nonterminal B = (Nonterminal)p.Rhs[0]; Nonterminal C = (Nonterminal)p.Rhs[1]; var GB = G[B]; foreach (Production q in GB.productionMap[GB.startSymbol]) { GrammarSymbol[] symbols = new GrammarSymbol[q.Rhs.Length + 1]; Array.Copy(q.Rhs, symbols, q.Rhs.Length); symbols[q.Rhs.Length] = C; productionsGNF.Add(new Production(A, symbols)); } } } } foreach (Nonterminal B in Vars) { var GB = G[B]; foreach (var kv in GB.productionMap) { if (!kv.Key.Equals(GB.startSymbol)) { productionsGNF.AddRange(kv.Value); } } } #endregion ContextFreeGrammar gnf = new ContextFreeGrammar(cnf.startSymbol, productionsGNF); return(gnf); }
/// <summary> /// Removes useless symbols from the grammar. /// Assumes that the language is nonempty. /// </summary> public ContextFreeGrammar RemoveUselessSymbols() { HashSet <Nonterminal> useful_backwards = new HashSet <Nonterminal>(); //Lemma 4.1, p. 88, Hopcroft-Ullman #region backward reachability var variableNodeMap = new Dictionary <Nonterminal, VariableNode>(); foreach (Nonterminal v in this.variables) { variableNodeMap[v] = new VariableNode(); } List <ProductionNode> productionLeaves = new List <ProductionNode>(); foreach (Nonterminal v in this.variables) { VariableNode parent = variableNodeMap[v]; foreach (Production p in this.productionMap[v]) { var children = Array.ConvertAll(new List <Nonterminal>(p.GetVariables()).ToArray(), w => variableNodeMap[w]); ProductionNode pn = new ProductionNode(parent, children); if (children.Length == 0) { productionLeaves.Add(pn); } else { foreach (VariableNode child in children) { child.parents.Add(pn); } } } } foreach (ProductionNode leaf in productionLeaves) { leaf.PropagateMark(); } foreach (Nonterminal v in this.variables) { if (variableNodeMap[v].isMarked) { useful_backwards.Add(v); } } #endregion if (!useful_backwards.Contains(this.startSymbol)) { throw new AutomataException(AutomataExceptionKind.LanguageOfGrammarIsEmpty); } ContextFreeGrammar g1 = this.RestrictToVariables(useful_backwards); HashSet <Nonterminal> useful_forwards = new HashSet <Nonterminal>(); //Lemma 4.2, p. 89, Hopcroft-Ullman #region forward reachability Stack <Nonterminal> stack = new Stack <Nonterminal>(); stack.Push(g1.StartSymbol); useful_forwards.Add(g1.StartSymbol); while (stack.Count > 0) { Nonterminal v = stack.Pop(); foreach (Production p in g1.GetProductions(v)) { foreach (Nonterminal u in p.GetVariables()) { if (!useful_forwards.Contains(u)) { useful_forwards.Add(u); stack.Push(u); } } } } #endregion ContextFreeGrammar g2 = g1.RestrictToVariables(useful_forwards); return(g2); }